• Title/Summary/Keyword: diels-alder reaction

Search Result 95, Processing Time 0.027 seconds

Characterization of Low Molecular Weight Polyphenols from Pine (Pinus radiata) Bark

  • Mun, Sung-Phil;Ku, Chang-Sub
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.424-430
    • /
    • 2006
  • Low molecular weight polyphenols were isolated from hot water extracts of radiata pine (Pinus radiata) bark using a Sephadex LH-20 column and characterized by $^1H$ and $^{13}C$ NMR, UV, FT-IR, and GC-MS analyses. Major compounds isolated and identified were protocatechuic acid, trans-taxifolin, and quercetin. Trans-taxifolin, an important intermediate in biosynthetic route of proanthocyanidin (PA), was isolated in large quantities and indicates that PA is a major component of radiata pine bark. Small amounts of polyphenols were identified by GC-MS analysis. The presence of p-hydroxybenzoic acid, vanillic acid, protocatechuic acid, cis- and trans-feruic acid, p-coumaric acid, trans-caffeic acid, (-)-epicatechin, (+)-catechin, trans- and cis-taxifolin, (+)-gallocatechin, and quercetin was confirmed by comparison of mass fragmentation patterns and retention times (RT) with authentic samples. In addition, the presence of astringenin, astringenin glycoside, trans- and cis-leucodelphinidin was strongly assumed from characteristic mass fragment ions due to their conjugated structure and retro Diels-Alder reaction, and also from biosynthetic route of PA. GC-MS analysis allowed us to detect small amounts of phenolic acids and flavonoids and eventually discriminate trans- and cis-configuration in the identified polyphenols.

Synthesis of Indoline tri-isopropyl benzene sulfonamide as a potential new asymmetric catalyst (새로운 술폰아미드계의 촉매의 합성)

  • Yun, In-Gwon;Kim, Hwan-Cheol
    • The Journal of Natural Sciences
    • /
    • v.7
    • /
    • pp.47-51
    • /
    • 1995
  • In order to develope new asymmetric catalyst, we synthesized the following new sulfonamide derivatives start from S-Indoline-2-Carboxylic Acid via the following 5 steps. Hydroxy methyl derivative(1) was thus treated with methane sulfonyl chloride in the presence of triethylamine as base to give mesylated derivative(2) in 85% of isolated yield. The mesylate compound (2) was treated with excess sodium azide to give Azido derivative (4) in 95% isolated yield. Azido compound (3) was then reduced to the corresponding amino derivative in near quntitative yield by the hydrogenation under hydrogen atmospere in the presence of catalytic amount of Pd-C. The amino derivative (4) was converted to its sulfonamide derivatives by the treatment of compound(4) with triisopropyl benzene sulfonyl chloride in the presence of triethyl amine as base. Finally t-BOC group of the compound(5) was removed by the treatement of excess Trifluoro-acetic acid in near quantitative yield to give the target sulfonamide derivative (7) .in this paper we prepared compound(6) in 49% overall yield via the 5 steps of synthesis starting from t-Boc- 2-hydroxy methyl indoline(1) which cab be easily prepared from commercial available S-indoline-2-carboxylic acid by known methods. we plan to apply this new catalyst for the asymmetric reduction , diels-alder reaction, aldolcondensation reaction in due courses.

  • PDF

The Synthesis of the Stable IVDU Derivative for Imaging HSV-1 TK Expression (체내 안정형 HSV1-tk (Herpes Simplex Virus Type-1 Thymidine Kinase) 영상용 IVDU 유도체의 합성)

  • Kim, Eun-Jung;Choi, Tae-Hyun;Ahn, Soon-Hyuk;Kim, Byoung-Soo;Park, Hyun;Cheon, Gi-Jeong;Rhee, Hak-June;An, Gwang-Il
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.478-486
    • /
    • 2009
  • Purpose: 5-iododeoxyuridine analogues have been exclusively developed for the potential antiviral and antitumor therapeutic agents. In this study, we synthesized carbocyclic radioiododeoxyuridineanalogue (ddIVDU) and carbocyclic intermediate as efficient carbocyclic radiopharmaceuticals. Materials and Methods: The synthesis is LAH reduction, hetero Diels-Alder reaction as key reactions including Pd(0)-catalyzed coupling reaction together with organotin. MCA-RH7777 (MCA) and MCA-tk (HSV1-tk positive) cells were treated with various concentration of carbocyclic ddIVDU, and GCV. Cytotoxicity was measured by the MTS methods. For in vitro uptake study, MCA and MCA-tk cells were incubated with 1uCi of [$^{125}I$]carbocyclic ddIVDU. Accumulated radioactivity was measured after various incubation times. Results: The synthesis of ddIVDU and precursor for radioiodination were achieved from cyclopentadiene in good overall yield, respectively. The radioiododemetallation for radiolabeling gave more than 80% yield with > 95% radiochemical purity. GCV was more toxic than carbocyclic ddIVDU in MCA-tk cells. Accumulation of [$^{125}I$]carbocyclic ddIVDU was higher in MCA-tk cells than MCA cells. Conclusion: Biological data reveal that ddIVDU is stable in vitro, less toxic than ganciclovir (GCV), and selective in HSV1-tk expressed cells. Thus, this new carbocyclic nucleoside, referred to in this paper as carbocyclic 2',3'-didehydro-2',3'-dideoxy-5- iodovinyluridine (carbocyclic ddIVDU), is a potential imaging probe for HSV1-tk.

Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering

  • Lee, Jin Hyun
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.235-248
    • /
    • 2018
  • Background: Injectable hydrogels have been extensively researched for the use as scaffolds or as carriers of therapeutic agents such as drugs, cells, proteins, and bioactive molecules in the treatment of diseases and cancers and the repair and regeneration of tissues. It is because they have the injectability with minimal invasiveness and usability for irregularly shaped sites, in addition to typical advantages of conventional hydrogels such as biocompatibility, permeability to oxygen and nutrient, properties similar to the characteristics of the native extracellular matrix, and porous structure allowing therapeutic agents to be loaded. Main body: In this article, recent studies of injectable hydrogel systems applicable for therapeutic agent delivery, disease/cancer therapy, and tissue engineering have reviewed in terms of the various factors physically and chemically contributing to sol-gel transition via which gels have been formed. The various factors are as follows: several different non-covalent interactions resulting in physical crosslinking (the electrostatic interactions (e.g., the ionic and hydrogen bonds), hydrophobic interactions, ${\pi}$-interactions, and van der Waals forces), in-situ chemical reactions inducing chemical crosslinking (the Diels Alder click reactions, Michael reactions, Schiff base reactions, or enzyme-or photo-mediated reactions), and external stimuli (temperatures, pHs, lights, electric/magnetic fields, ultrasounds, or biomolecular species (e.g., enzyme)). Finally, their applications with accompanying therapeutic agents and notable properties used were reviewed as well. Conclusion: Injectable hydrogels, of which network morphology and properties could be tuned, have shown to control the load and release of therapeutic agents, consequently producing significant therapeutic efficacy. Accordingly, they are believed to be successful and promising biomaterials as scaffolds and carriers of therapeutic agents for disease and cancer therapy and tissue engineering.

Synthesis and Lubricating Properties of Dimer Acid Derivatives Based on Used Vegetable Oil (폐식물유 기반 다이머산 유도체의 합성 및 경유의 윤활성능)

  • Lee, Sang Jun;Kim, Young-Wun;Yoo, Seung-Hyun;Kim, Nam-Kyun;Shin, Ji Hoon;Yoon, Byung-Tae
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.530-536
    • /
    • 2013
  • Vegetable oil-based dimer acid derivatives were prepared through a two-step procedure and their lubricating properties for diesel fuel were evaluated using high frequency reciprocating ring (HFRR) method to investigate wear scar diameter (WSD). Diels-Alder reaction at an elevated temperature transformed fatty acid to dimer acid, subsequently converted into dimer acid derivatives by esterification with methanol. It should be noted that the derivatives were dissolved well in diesel oil up to 1 wt%. After adding 120 ppm of the derivatives to pure diesel, the WSD significantly decreased to $300{\sim}05{\mu}m$, compared to $552{\mu}m$ of WSD in pure diesel. Dimer acid derivatives having carboxylic acid show superb in lubricating property which does not depend on the alkyl group in the derivatives.