• Title/Summary/Keyword: dielectric model

Search Result 408, Processing Time 0.02 seconds

Numerical Calculation for Impedance of Horizontal Ground Electrode for Information and Communication Facilities with Considering Characteristics of Permittivity in Soil (토양의 유전율 특성을 고려한 정보통신설비용 수평접지전극의 임피던스 계산)

  • Ahn, Chang-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.245-251
    • /
    • 2013
  • An impedance of ground electrode for information and communication facilities has a significant relationship with the electrical characteristics of soil where the ground electrode is buried. Especially, the impedance of ground electrode is directly affected by the characteristics of permittivity and conductivity in soil as a function of a frequency of an applied electric field. The program based on the electromagnetic field model was developed in MATLAB. Because both permittivity and conductivity can not be modified in commercial programs. The permittivity of soil was applied with the Debye equation which is a model of dielectric relaxation. And the empirical equation of the conductivity in soil was quoted in other paper. In order to confirm the reliability of proposed program, the impedance measurement of ground electrode was carried out, which were compared with the results of simulation in commercial program. In result, it was confirmed that the impedance and phase different simulated by appling the characteristics of permittivity and conductivity in soil are in good agreement with the measured values than results of NEC.

Improvement of Connector Performance Using Analysis of Characteristic Impedance (특성임피던스 분석을 사용한 커넥터 성능향상)

  • Yang, Jeong-Kyu;Kim, Moon-Jung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.9
    • /
    • pp.47-53
    • /
    • 2011
  • The signal transmission properties of the connector such as insertion loss and return loss are investigated using analysis procedure of S-parameter simulation, equivalent model extraction, and characteristic impedance calculation. S-parameter simulation is performed by connector's modeling and solving based on 3-dimensional finite element method. The connector's equivalent model of ${\pi}$ type is are proposed and extracted with an optimization process of circuit analysis simulator. The characteristic impedance of the connector is calculated with results of circuit analysis simulation and S-parameter data. According to the connector's characteristic impedance, it's revised design is carried out. In this work, the connector's effective contact area is increased and its body is applied as a high dielectric material in order to increase its capacitance and then obtain impedance matching. Therefore, return loss of the connector is improved by approximately 10 dB due to its design revision.

Effect of Epoxy Dielectric Cooling on existing metal Porticoes in GIS (GIS내 금속이물 존재시 에폭시 절연코팅의 효과)

  • 곽희로;구교선;김영찬
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.2
    • /
    • pp.95-101
    • /
    • 2003
  • In this paper, partial discharges(PDs), lift off and breakdown voltage were measured when metal particles existed in a model GIS coated with epoxy resin on its bottom electrode, and the measured results were analyzed after comparing with the model DIS not coated. In order to presume the various fault case in GIS, we measured the experimental values with changing some experimental factors, such as the mixture ratio of SF$\_$6//N$_2$, the pressure of the gases, the kinds and diameter of the metal particles, and the coating thickness of the epoxy resin. As a result, the PDIV increased with the thickness of the epoxy resin, while the magnitude of PDs decreased at the same condition. The lift off voltages of steel alloy particles were higher than that of copper particles, and increased wit diameter of particles. Futhermore, the lift off voltages in the case of the electrode coated with epoxy resin were higher than that in the case of the uncoated one. In addition, the thicker the thickness of the epoxy resin was, the higher the breakdown voltage were. Thus, it was confirmed that the GIS coated with epoxy resin on its inner surface could be improved in insulation performance.

Design of Local Oscillator with Low Phase Noise for Ka-band Satellite Transponder (Ka-band 위성 중계기용 저위상잡음 국부발진기의 설계 및 제작)

  • 류근관;이문규;염인복;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.6
    • /
    • pp.552-559
    • /
    • 2002
  • The EM(Engineering Model) LO(Local Oscillator) is designed for Ka-band satellite transponder. The VCO(Voltage Controlled Oscillator) is implemented using a high impedance inverter coupled with dielectric resonator to improve the phase noise performance out of the loop bandwidth. The phase of VCO is locked to that of a stable OCXO(Oven Controlled Crystal Oscillator) by using a SPD(Sampling Phase detector) to improve phase noise performance in the loop bandwidth. This LO exhibits the harmonic rejection characteristics above 43.83 dBc and requires 15 V and 160 mA. The phase noise characteristics are performed as -102.5 dBc/Hz at 10 KHz offset frequency and -104.0 dBc/Hz at 100 KHz offset frequency, respectively, with the output power of 13.50 dBm$\pm$0.33 dB over the temperature range of -20~+7$0^{\circ}C$.

Study of the New Structure of Inter-Poly Dielectric Film of Flash EEPROM (Flash EEPROM의 Inter-Poly Dielectric 막의 새로운 구조에 관한 연구)

  • Shin, Bong-Jo;Park, Keun-Hyung
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.10
    • /
    • pp.9-16
    • /
    • 1999
  • When the conventional IPD (inter-poly-dielctrics) layer with ONO(oxide-nitride-oxide) structure was used in the Flash EEPROM cell, its data retention characteristics were significanfly degraded because the top oxide of the ONO layer was etched off due to the cleaning process used in the gate oxidation process for the peripheral MOSFETs. When the IPD layer with the ONON(oxide-nitride-oxide-nitride) was used there, however, its data retention characteristics were much improved because the top nitride of the ONON layer protected the top oxide from being etched in the cleaning process. For the modelling of the data retention characteristics of the Flash EEPROM cell with the ONON IPD layer, the decrease of the threshold voltage cue to the charge loss during the bake was here given by the empirical relation ${\Delta}V_t\; = \;{\beta}t^me^{-ea/kT}$ and the values of the ${\beta}$=184.7, m=0.224, Ea=0.31 eV were obtained with the experimental measurements. The activation energy of 0.31eV implies that the decrease of the threshold voltage by the back was dur to the movement of the trapped electrons inside the inter-oxide nitride layer. On the other hand, the results of the computer simulation using the model were found to be well consistent with the results of the electrical measurements when the thermal budget of the bake was not high. However, the latter was larger then the former in the case of the high thermal budger, This seems to be due to the leakage current generated by the extraction of the electrons with the bake which were injected into the inter-oxide niride later and were trapped there during the programming, and played the role to prevent the leakage current. To prevent the generation of the leakage current, it is required that the inter-oxide nitride layer and the top oxide layer be made as thin and as thick as possible, respectively.

  • PDF

Analysis of A-Sandwich Radome with Metamaterials Core (메타 물질 코어를 갖는 A-Sandwich 레이돔 전파 특성 해석)

  • Lee, Kyung-Won;Hong, Ic-Pyo;Park, Beom-Jun;Chung, Yeong-Chul;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1161-1170
    • /
    • 2009
  • In this paper, dielectric, drude model and ideal metamaterial are applied to core of A-Sandwich radome and each radome is analyzed using recursive method in Ku band. The main parameters of radome performance are insertion loss, insertion phase delay and depolarization. In case of ideal metamaterial, the radome using ideal metamaterial dose not generate depolarization because insertion loss, insertion phase delay and loss for incidence angle of wave do not happened. If circular polarization wave is incident on radome with meta material, transmitted wave also keeps circular polarization. In case of the dispersive metamaterial, the performance of radome using dispersive metamaterial is better than it of radome using dielectric in a part of frequency band. From these results, it is showed that metamaterial can be applied to various radome structure.

A $2{\times}2$ Microstrip Patch Antenna Array for Moisture Content Measurement of Paddy Rice (산물벼 함수율 측정을 위한 $2{\times}2$ 마이크로스트립 패치 안테나 개발)

  • 김기복;김종헌;노상하
    • Journal of Biosystems Engineering
    • /
    • v.25 no.2
    • /
    • pp.97-106
    • /
    • 2000
  • To develop the grain moisture meter using microwave free space transmission technique, a 10.5GHz microwave signal with the power of 11mW generated by an oscillar with a dielectric resonator is transmitted to an isolator and radiated from a transmitting $2{\times}2$ microstrip patch array antenna into the sample holder filled with the 12 to 26%w.b. of Korean Hwawung paddy rice. the microwave signal, attenuated through the grain with moisture, is collected by a receiving $2{\times}2$ microstrip patch array antenna and detected using a Shottky diode with excellent high frequency characteristic. A pair of light and simple microstrip patch array antenna for measurement of grain moisture content is designed and implemented on atenflon substrate with trleative dielectric constant of 2.6 and thickness of 0.54 by using Ensemble ver. 4.02 software. The aperture of microstrip patch arrays is 41 mm width and 24mm high. The characteristics of microstrip patch antenna such as grain. return loss, and bandwidth are 11.35dBi, -38dB and 0.35GHz($50^{\circ}$ at far-field pattern of E and H plane. The width of the sample holder is large enough to cover the signal between the antennas temperature and bulk density respectively. The calibration model for measurement of grain moisture content is proposed to reduce the effects of fluectuations in bulk density and temperature which give serious errors for the measurements . From the results of regression analysis using the statistically analysis method, the moisture content of grain samples (MC(%)) is expressed in terms of the output voltage(v), temperature (t), and bulk density of samples(${\rho}b$)as follows ;$$MC(%)\;=\;(-3.9838{\times}10^{-8}{\times}v^{3}+8.023{\times}10^{-6}{\times}v^{2}-0.0011{\times}v-0.0004{\times}t+0.1706){\frac{1}{{\rho}b}}{\times}100$ Its determination coefficient, standard error of prediction(SEP) and bias were found to be 0.9855, 0.479%w.b. and -0.0.369 %w.b. respectively between measured and predicted moisture contents of the grain samples.

  • PDF

Impedance Spectroscopy Models for X5R Multilayer Ceramic Capacitors

  • Lee, Jong-Sook;Shin, Eui-Chol;Shin, Dong-Kyu;Kim, Yong;Ahn, Pyung-An;Seo, Hyun-Ho;Jo, Jung-Mo;Kim, Jee-Hoon;Kim, Gye-Rok;Kim, Young-Hun;Park, Ji-Young;Kim, Chang-Hoon;Hong, Jeong-Oh;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.475-483
    • /
    • 2012
  • High capacitance X5R MLCCs based on $BaTiO_3$ ceramic dielectric layers exhibit a single broad, asymmetric arc shape impedance and modulus response over the wide frequency range between 1 MHz to 0.01 Hz. Analysis according to the conventional brick-layer model for polycrystalline conductors employing a series connection of multiple RC parallel circuits leads to parameters associated with large errors and of little physical significance. A new parametric impedance model is shown to satisfactorily describe the experimental spectra, which is a parallel network of one resistor R representing the DC conductivity thermally activated by 1.32 eV, one ideal capacitor C exactly representing bulk capacitance, and a constant phase element (CPE) Q with complex capacitance $A(i{\omega})^{{\alpha}-1}$ with ${\alpha}$ close to 2/3 and A thermally activated by 0.45 eV or ca. 1/3 of activation energy of DC conductivity. The feature strongly indicate the CK1 model by J. R. Macdonald, where the CPE with 2/3 power-law exponent represents the polarization effects originating from mobile charge carriers. The CPE term is suggested to be directly related to the trapping of the electronic charge carriers and indirectly related to the ionic defects responsible for the insulation resistance degradation.

A Preprocessing Method for Ground-Penetrating-Radar based Land-mine Detection System (지면 투과 레이더(GPR) 기반의 지뢰 탐지 시스템을 위한 표적 후보 검출 기법)

  • Kong, Hae Jung;Kim, Seong Dae;Kim, Minju;Han, Seung Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.171-181
    • /
    • 2013
  • Recently, ground penetrating radar(GPR) has been widely used in detecting metallic and nonmetallic buried landmines and a number of related researches have been reported. A novel preprocessing method is proposed in this paper to flag potential locations of buried mine-like objects from GPR array measurements. GPR operates by measuring the reflection of an electromagnetic pulse from discontinuities in subsurface dielectric properties. As the GPR pulse propagates in the geologic medium, it suffers nonlinear attenuation as the result of absorption and dispersion, besides spherical divergence. In the proposed algorithm, a logarithmic transformed regression model which successfully represents the time-varying signal amplitude of the GPR data is estimated at first. Then, background signals may be densely distributed near the regression model and candidate signals of targets may be far away from the regression model in the time-amplitude space. Based on the observation, GPR signals are decomposed into candidate signals of targets and background signals using residuals computed from the estimated value by regression and the measurement of GPR. Candidate signals which may contain target signals and noise signals need to be refined. Finally, targets are detected through the refinement of candidate signals based on geometric signatures of mine-like objects. Our algorithm is evaluated using real GPR data obtained from indoor controlled environment and the experimental results demonstrate remarkable performance of our mine-like object detection method.

Analysis of Positive Bias Temperature Instability Characteristic for Nano-scale NMOSFETs with La-incorporated High-k/metal Gate Stacks (La이 혼입된 고유전체/메탈 게이트가 적용된 나노 스케일 NMOSFET에서의 PBTI 신뢰성의 특성 분석)

  • Kwon, Hyuk-Min;Han, In-Shik;Park, Sang-Uk;Bok, Jung-Deuk;Jung, Yi-Jung;Kwak, Ho-Young;Kwon, Sung-Kyu;Jang, Jae-Hyung;Go, Sung-Yong;Lee, Weon-Mook;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.182-187
    • /
    • 2011
  • In this paper, PBTI characteristics of NMOSFETs with La incorporated HfSiON and HfON are compared in detail. The charge trapping model shows that threshold voltage shift (${\Delta}V_{\mathrm{T}}$) of NMOSFETs with HfLaON is greater than that of HfLaSiON. PBTI lifetime of HfLaSiON is also greater than that of HfLaON by about 2~3 orders of magnitude. Therefore, high charge trapping rate of HfLaON can be explained by higher trap density than HfLaSiON. The different de-trapping behavior under recovery stress can be explained by the stable energy for U-trap model, which is related to trap energy level at zero electric field in high-k dielectric. The trap energy level of two devices at zero electric field, which is extracted using Frenkel-poole emission model, is 1,658 eV for HfLaSiON and 1,730 eV for HfLaON, respectively. Moreover, the optical phonon energy of HfLaON extracted from the thermally activated gate current is greater than that of HfLaSiON.