• 제목/요약/키워드: die pad

검색결과 68건 처리시간 0.028초

수치제어 데이터와 오프라인 프로그램을 이용한 연마 로봇 시스템 개발 (The Development of Grinding Robot System Using NC data and Off-line Programming)

  • 오영섭;유범상
    • 한국정밀공학회지
    • /
    • 제16권3호통권96호
    • /
    • pp.9-17
    • /
    • 1999
  • This paper presents a method of grinding and polishing automation of precision die after CNC machining. The method employs a robot system equipped with a pneumatic spindle and a special abrasive film pad. The robot program is automatically generated off-line program form a PC and downloaded to robot controller. Position and orientation data for the program is supplied form cutter contact (CC) data of NC machining process. This eliminates separate robot teaching process. This paper aims at practical automation of die finishing process which is very time consuming and suffering from shortage of workpeople. Time loss due to changeover from one product to another is eliminated by PC off-line programming exploiting appropriate NC machining data. Dextrous 6-axis robot with rigid wrist and simple tooling enables the process applicable to larger, rather complex 3 dimensional free surfaces.

  • PDF

가변성형 공정에서 탄성 패드의 영향에 관한 수치적 연구 (Numerical Study on Effect of Using Elastic Pads in Flexible Forming Process)

  • 허성찬;서영호;노학곤;구태완;강범수
    • 대한기계학회논문집A
    • /
    • 제34권5호
    • /
    • pp.549-556
    • /
    • 2010
  • 가변성형공정에서는 형상 변형이 가능한 가변금형의 성형면을 고르게 형성하기 위하여 일반적으로 우레탄, 고무 등 같은 탄성체 패드를 가변금형과 소재 사이에 삽입하여 이용한다. 이에 본 연구에서는 이러한 탄성패드가 성형성에 미치는 영향에 대한 조사를 위하여 탄성체의 경도 및 두께를 주요 변수로 고려한 수치해석적 연구를 수행하였다. 탄성패드 소재로는 우레탄을 이용하였으며, 이의 물성 획득을 위한 압축시험을 수행하였고, 초탄성체 재료 모델로 가정하여 가변성형공정해석에 적용하였다. 탄성체의 경도와 두께의 변화에 따른 해석 결과로부터 성형 정확도를 조사하기 위하여 주방향의 단면형상을 비교하였으며, 목적형상에 대한 오차를 비교하였다. 이로부터 가변성형공정에 이용되는 탄성 패드가 적절히 선정되어야 함을 확인하였으며, 패드의 경도 및 두께 선정에 대한 기준을 제안하였다.

미세 홀 어레이 펀칭 가공 (Punching of Micro-Hole Array)

  • 손영기;오수익;임성한
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 금형가공,미세가공,플라스틱가공 공동 심포지엄
    • /
    • pp.193-197
    • /
    • 2005
  • This paper presents a method by which multiple holes of ultra small size can be punched simultaneously. Silicon wafers were used to fabricate punching die. Workpiece used in the present investigation were the rolled pure copper of $3{\mu}m$ in thickness and CP titanium of $1.5{\mu}m$ in thickness. The metal foils were punched with the dies and arrays of circular and rectangular holes were made. The diameter of holes ranges from $2-10{\mu}m$. The process set-up is similar to that of the flexible rubber pad forming or Guerin process. Arrays of holes were punched successfully in one step forming. The punched holes were examined in terms of their dimensions, surface qualities, and potential defect. The effects of the die hole dimension on ultra small size hole formation of the thin foil were discussed. The optimum process condition such as proper die shape and diameter-thickness ratio (d/t) were also discussed. The results in this paper show that the present method can be successfully applied to the fabrication of ultra small size hole array in a one step operation.

  • PDF

수직형 MEMS 프로브 팁의 신뢰성 설계 및 전기적 특성평가 (Reliable design and electrical characteristics of vertical MEMS probe tip)

  • 이승훈;추성일;김진혁;한동철;문성욱
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제7권1호
    • /
    • pp.23-29
    • /
    • 2007
  • Probe card is a test component which is to classify the known good die with electrical contact before the packaging in the ATE (automatic testing equipment). Conventional probe tip was mostly needle type, it has been difficult to meet with conventional type, because of decreasing chip size, pad to pad pitch and pads size increasingly. For that reason, probe cards using MEMS (micro electro mechanical system) technology have been developed for various semiconductor chips. In this paper, Area Array type MEMS Probe tip was designed,, fabricated, and characterized its mechanical and electrical properties. The authors found that good electrical characteristics under $1{\Omega}$ were acquired with gold (Au) and aluminium (Al) pad contact test over 0.5gf and 4gf respectively. And, contact resistance variation under $0.1{\Omega}$ were achieved with 100,000 times of repetition test. And, insertion loss (IS) for high frequency operation was ascertained over 300MHz at -3dB loss.

  • PDF

미세박판 전단시의 버 발생 인자에 관한 연구 (Parameter Investigation of Burr Formation on Sheet Metal Shearing Process)

  • 김헌영;김병희;신용승;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.231-234
    • /
    • 2001
  • Shearing, including blanking, trimming, piercing, etc, is one of the most frequently used processes in sheet metal manufacturing. In this paper, an individual set of tooling with an in-die sensor was designed and precisely fabricated to carry out the experiment for the shearing process investigation. Through various experiments, it has been examined the influence of process parameters such as clearance, edge material properties and pad configuration. Since the tension between the part and the scrap increases when the clearance increases, the clearance should be selected properly in order to reduce the burr height. Also removal of the lower pad makes the sheared surface worse and the shearing system unstable. The shearing force increases when the clearance decreases and the friction of the tooling material decreases. Dynamic reaction force is also important to obtain the fine sheared surfaces.

  • PDF

가변스트레치성형 설계변수와 성형오차의 상관관계에 대한 통계적 연구 (Statistical Study on Correlation Between Design Variable and Shape Error in Flexible Stretch Forming)

  • 서영호;허성찬;강범수;김정
    • 소성∙가공
    • /
    • 제20권2호
    • /
    • pp.124-131
    • /
    • 2011
  • A flexible stretch forming process is useful for small quantity batch production because various shape changes of the flexible die can be achieved conveniently. In this study, the design variables, namely, the punch size, curvature radius and elastic pad thickness, were quantitatively evaluated to understand their influence on sheet formability using statistical methods such as the correlation and regression analyses. Forming simulations were designed and conducted by a three-way factorial design to obtain numerical values of a shape error. Linear relationships between the design variables and the shape error resulted from the Pearson correlation analysis. Subsequently, a regression analysis was also conducted between the design variables and the shape error. A regression equation was derived and used in the flexible die design stage to estimate the shape error.

밀리 단위의 원형핀 전방압출에 있어서 공정인자가 기계적 성질에 미치는 영향 연구 (A Study on the Effect of Process Parameters to Mechanical Property in Forward Extrusion of Milli-size Cylindrical Pin)

  • 심경섭;김용일;이용신;김종호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.797-801
    • /
    • 2003
  • The mechanical properties such as shear strength and the hardness of milli-size products that manufactured for various process parameters by forward extrusion using square dies are investigated. Shear strength test is implemented for the observation of relation between vickers hardness and shear strength in the interface of head and shaft part of a stepped pin. When the extrusion ratios of pure aluminum and pure copper billets increase, the hardness on both the surface and the center line of a pin also increase, especially the hardness on the surface is shown to be a little higher than on the center. The existence of knock-out pad in extrusion die caused hardness increase in the interface of a extruded pin. As compared shear strength with hardness of a pin, the approximated linear relations are suggested in this study.

  • PDF

초미세 금속 박판 홀 어레이 가공 (Fabrication of Ultra Small Size Hole Array on Thin Metal Foil)

  • 임성한;손영기;오수익
    • 소성∙가공
    • /
    • 제15권1호
    • /
    • pp.9-14
    • /
    • 2006
  • In the present research, the simultaneous punching of ultra small size hole of $2\~10\;{\mu}m$ in diameter on flat rolled thin metal foils was conducted with elastic polymer punch. Workpiece used in the present investigation were the rolled pure copper of $3{\mu}m$ in thickness and CP titanium of 1.5fm in thickness. The metal foils were punched with the dies and arrays of circular and rectangular holes were made. The process set-up is similar to that of the flexible rubber pad farming or Guerin process. Arrays of holes were punched successfully in one step forming. The punched holes were examined in terms of their dimensions. The effects of the wafer die hole dimension and heat treatment of the workpiece on ultra small size hole formation of the thin foil were discussed. The process condition such as proper die shape, pressure, pressure rate and diameter-thickness ratio (d/t) were also discussed. The results in this paper show that the present method can be successfully applied to the fabrication of ultra small size hole away in a one step operation.

분할가변금형을 이용한 박판의 가변성형공정 연구 (Study of Flexible Forming Process Involving the Use of Sectional Flexible Die for Sheet Material)

  • 허성찬;구태완;송우진;김정;강범수
    • 대한기계학회논문집A
    • /
    • 제34권3호
    • /
    • pp.299-305
    • /
    • 2010
  • 가변성형 공정에서 동일한 크기의 성형펀치 배열로 구성된 가변금형을 이용하는 경우 펀치의 크기가 일정하여 성형 가능한 곡률 반경이 제한되기 때문에 비교적 유연성이 낮다. 이에 본 연구에서는 가변금형의 유연성을 높이기 위하여 분할가변금형에 대한 개념을 제안하였다. 임의의 성형면을 형성하기 위하여 두 가지 크기의 펀치로 구성된 펀치 블록을 착안하였다. 상대적으로 큰 곡률 반경을 갖는 성형영역에 대해서는 크기가 큰 펀치 블록을 적용하였으며, 작은 곡률 반경을 갖는 성형영역에 대해서는 작은 크기의 펀치로 구성된 펀치 블록을 적용하였다. 해석적 연구를 토대로 성형된 제품의 단면 형상을 비교하였으며 이로부터 서로 다른 크기의 펀치 블록을 조합하여 구성한 분할가변금형을 이용한 판재의 성형공정이 비교적 복잡한 곡률 반경 분포를 갖는 곡면 가공에 적합함을 확인하였다.

Sn-3.5Ag 무연 솔더를 이용한 Si-wafer와 FR-4기판의 상온접합 (Ultrasonic bonding between Si-wafer and FR-4 at room temperature using Sn-3.5Ag solder)

  • 김정모;조선연;김규석;이영우;정재필
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.54-56
    • /
    • 2005
  • Ultrasonic soldering using of Si-wafer to FR-4 PCB atroom temperature was investigated. Sn3.5Ag foil rolled $100{\mu}m$ was used for solder. The UBM of Si-die was Cu/ Ni/ Al from top to bottom and its thickness was $0.4{\mu}m$, $0.4{\mu}m$, $0.3{\mu}m$ respectively. Pad on FR-4 PCB comprised of Au/ Ni/ Cu from top to bottom and its thickness was $0.05{\mu}m$, $5{\mu}m$, $18{\mu}m$ respectively. The ultrasonic soldering time was changed from 0.5sec to 3.0sec and its power 1400W. As experimental result, reliable bond joint by ultrasonic at room temperature was obtained. The shear strength increased with soldering time up to 2.5 sec. That means at 2.5sec, the shear strength showed maximum rate of 65.23N. The strength decreased to 33.90N at 3.0 sec because the cracks generated along the intermetallic compound between Si-wafer and Sn-3.5mass%Ag solder. intermetallic compound produced by ultrasonic between the solder and the Si-die was $(Cu, Ni)_{6}Sn_{5}$ and the intermetallic compound between solder and pad on FR-4 was $(Ni, Cu)_{3}Sn_{4}$.

  • PDF