• Title/Summary/Keyword: die finishing

Search Result 59, Processing Time 0.017 seconds

A Study on Water Contact Angle and Peel Strength by Anti- Adhesion Coating on Die Blade Materials for Adhesive Film Cutting (점착필름 절단용 다이 칼날 소재에 적용된 점착 방지 코팅의 물 접촉각 및 박리강도에 관한 연구)

  • Yujin Ha;Min-Wook Kim;Wook-Bae Kim
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.190-196
    • /
    • 2023
  • Anti-adhesion coatings are very important in the processing of adhesive materials such as optical clear adhesive (OCA) films. Choosing the appropriate release coating material for dies and tools can be quite challenging. Hydrophobic surface treatment is usually performed, and its performance is often estimated by the static water contact angle (CA). However, the relationship between the release performance and the CA is not well understood. In this study, the water CAs of surfaces coated with anti-adhesion materials and the peel strengths of the acrylic-based adhesive films are evaluated. STC5 and SUS304 are selected as the base materials. Base materials with different surface roughnesses are produced by hairline finishing, mirror-polishing, and end milling. Four fluoropolymer compounds, including a self-assembled monolayer, are selected to make the base surface hydrophobic. Static, advancing, and receding CAs are mostly increased due to the coating, but the CA hysteresis is found to increase or decrease depending on the coating material. The peel strengths all decreased after coating and are largely dependent on the coating material, with significantly lower values observed for fluorosilane and perfluoropolyether silane coatings. The peel strength is observed to correlate better with the static CA and advancing CA than with the receding CA or hysteresis. However, it is not possible to accurately predict the anti-adhesion performance based on water CA alone, as the peel strengths are not fully proportional to the CAs.

A Physical Simulation of Powder Forged Con-Rod (승용차용 커넥팅로드의 분말단조시 예비성형체설계를 위한 실험적 연구)

  • 이정환;이영선;박종진;정형식
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.06a
    • /
    • pp.35-46
    • /
    • 1996
  • The powder forging process offers beneficial material utilization as well as the minimization of finishing operations over that of conventionally forged rods. In the present work, the sintering behavior of Fe-2Cu-0.6C-0.35MnS, optimum preform design and forgeability of various forging conditions were investigated. This data were generated using a newly proposed sub-scaled con-rod specimen developed specifically to simulate the powder forging process. The results of present work, powder perform is so difficult to flow material into die cavity and mass flow has no effect on improving the strength. And, applied force to increase density of the specimen flowed material is greater than that of all repessing mode. On the contrary, the specimen flowed material became increased hardness of inside in contrast with all repressing mode, but the tensile strength were decreased with residual porosity in surface. Due to material flow characteristic of powder preform, the section of lower density in powder preform became also lower density in forged con-rod. So, preform design is very important in manufacturing powder forged connecting rod.

A Study on the Machinability of High Hardness Steel in Ball End Milling (볼 엔드밀 가공에서 고경도 강재의 절삭특성에 관한 연구)

  • Won S. T.;Hur J. H.;Lee Y. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.11-18
    • /
    • 2002
  • The STD11 and KP4 are important steels and applied to the manufacturing of the die and mold. The purpose of this study is to investigate the machinability of tool steels of STD11(HRC60) and KP4(HRC32) when machining them by using ball end milling tools coated with TiAlN. Cutting forces by using a Kistler piezo-cell type tool dynamometer, surface roughness and tool wear by using tool microscope are used in the tests. The results from the cutting tests of KP4 specimens show that 85m/min. of cutting speed and 0.32mm/rev. of feed per revolution are optimum conditions for the higher productivity and 0.26mm/rev. with the same cutting speed are optimum conditions for better surface finishing. The results from machining STD11 workpiece at 30m/min. of cutting speed and 0.17m/rev. of feed per revolution show recommended for the higher productivity. The KP4 shows relatively smaller cutting forces than STD11 and STD11 shows the better surface finish than KP4.

  • PDF

Improvement of machining process for mold parts using on-machine measuring system and CAM automation (기상측정 및 CAM 자동화를 통한 금형 제작 공정 개선)

  • Park, Hae-Woong;Yun, Jae-Woong;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.21-26
    • /
    • 2022
  • In the CNC machining process, problems such as lowering of machine operation rate, setting errors, and machining precision occur due to the increase in setting time and preparation time. These machining errors cause delays in delivery and increase in cost due to an increase in the number of mounting and dismounting of the workpiece, an increase in measurement and reprocessing time, and an increase in the finishing time in the assembly process. Therefore, in this study, by automating the setting of the work piece using OMV (On Machine Verification), which is a meteorological measurement system, the preparation time for machining the work piece and the setting accuracy were improved, the rework rate was reduced, and the mold manufacturing process was shortened. Through the advancement, standardzation, and automation of the mold part manufacturing process, we have improved productivity by minimizing low-value-added repetitive tasks. In addition, the measurement time was reduced by more than 50% and the machining measurement rate was improved by more than 20%, eliminating repetitive work for correcting machining defects, and reducing the work preparation time by more than 15% through automatic setting.

A study on optimal cutting conditions of MCD or NCD coated ball end-mills for finishing (MCD 및 NCD 코팅 볼 엔드밀의 정삭가공에서의 최적절삭조건에 관한 연구)

  • Jong-Su Kim
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.17-23
    • /
    • 2022
  • Recently, several studies are being conducted to achieve a curvature of 180° or more for the edge of the display glass. The thermocompression molding process is applied to the manufacture of curved glass, and high hardness G5 graphite is used as the mold material to withstand the impact applied to the mold. G5 graphite has high hardness and strong brittleness, which makes tool wear and surface damage easy during machining. Therefore, the demand for diamond-coated tools with good mechanical properties is increasing in the G5 machining field. In this study, the optimal cutting conditions and machinability of a nanodiamond (NCD) coated ball end mill being developed by a tool manufacturer were analyzed and evaluated. For this purpose, the same test was performed on the microdiamond (MCD) coated ball end mill and compared together. In summary, the machinability of MCD and NCD coated tools showed better cutting performance at a cutting speed of 282 m/min, a feed rate of 1,400 mm/min, and a radial depth of cut of 0.08 to 0.1 mm.

A Study on Cutting Conditions and Finishing Machining of Si Material Using Laser Assisted Module (레이저 보조 모듈을 이용한 Si 소재의 절삭조건 및 보정가공에 관한 연구)

  • Young-Durk Park
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.15-21
    • /
    • 2023
  • In this study, a diamond turning machine and a laser-assisted machining module were utilized for the complex combined cutting of aspheric shapes and fine patterns on the surface of high-hardness brittle material, silicon. The analysis of material's form accuracy and corrective machining was conducted based on key factors such as laser output, rotational speed, feed rate, and cutting depth to achieve form accuracy below 1 ㎛ and surface roughness below 0.1 ㎛. The cutting condition and corrective machining methods were investigated to achieve the desired form accuracy and surface roughness. The rotational speed of the spindle and the linear feed rate of the diamond turning machine were varied in five stages for the cutting condition test. Surface roughness and form accuracy were measured using both a contact surface profilometer and a non-contact surface profilometer. The experimental results revealed a tendency of improved surface roughness with increased rotational speed of the workpiece, and the best surface roughness and form accuracy were observed at a feed rate of 5 mm/min. Furthermore, based on the cutting condition experiments, corrective machining was performed. The experimental results demonstrated an improvement in form accuracy from 0.94 ㎛ to 0.31 ㎛ and a significant reduction in the average value of the surface roughness curve from 0.234 ㎛ to 0.061 ㎛. This research serves as a foundation for future studies focusing on the machinability in relation to laser output parameters.

Study on Thermoplastic Polyester Elastomer Coated Yarn for Replacing PVC Coated Yarn(1) (PVC 대체를 위한 열가소성 폴리에스테르 탄성중합체 코팅사 연구(1))

  • Young Ho Seo;See Woo Park;Myoung Jin Song;Hye Jin Hwang;Tae Hwan Oh
    • Textile Coloration and Finishing
    • /
    • v.35 no.3
    • /
    • pp.137-150
    • /
    • 2023
  • This paper investigated the applicability of polyester yarn coating using ther- moplastic polyester elastomer (TPEE) to replace polyvinyl chloride (PVC) coated yarn for blinds fabric. For this purpose, suitable TPEE for yarn coating was selected by measuring thermal and rheological properties and the yarn coating process conditions were investigated by changing variables such as extrusion temperature, die and nipple dimensions, take-up speed, and core yarn denier. TPEE coated yarns with a diameter of 0.3 and 0.4 mm were prepared, respectively. Tensile properties and cross-section uniformity revealed by a scanning electron microscopy (SEM) of the TPEE coated yarn were analyzed. Among several candidates, TPEE having a melt index of 35 and melting temperature of 153℃ was the most suitable for replacing PVC, and the opti- mum coating conditions for the TPEE coating yarn were a head temperature of 170℃ and core yarn denier of 420 denier. The selected TPEE coated yarns have enough ten- sile strength and uniformity to replace present PVC coated yarns, certified by SEM photograph.

Marginal fit of In-Ceram crown according to shoulder width (In-Ceram 전부도재관의 shoulder 폭경에 따른 변연적합도)

  • Chun, Seung-Geun;Lee, Cheong-Hee;Cho, Kwang-Hyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.16 no.2
    • /
    • pp.105-112
    • /
    • 2000
  • In-Ceram system is one of contemporary esthetic all ceramic restorations and has relatively high flexural strength. The purpose of this study was to evaluate the marginal fit of In-Ceram crown according to shoulder width and measuring position. In this study, twenty seven In-Ceram crowns devided into three groups, each prepared with shoulder width of 0.6mm, 0.9mm and 1.2mm. All specimens were cemented with glass ionomer cement. After cementation, specimens were measured marginal gap between the margin of the In-Ceram crown and the finishing line of resin master die by using a refrective microscope. Marginal gaps were recorded at the labial, lingual, mesial and distal measuring points on the resin master die. The results of this study were as follows: 1. Mean marginal fits of each group were $81.28{\mu}m$ in 0.6mm shoulder width, $70.78{\mu}m$ in 0.9mm shoulder width and $67.75{\mu}m$ in 1.2mm shoulder width. 2. There was significant difference between group 0.6mm and 0.9mm, 1.2mm.(p<0.05). 3. In comparison of marginal fit according to the measuring points, there was no significant difference.

  • PDF

Effects of Duckling training on Behavior and Rice Yield in Paddy Fields (오리 순치방법이 논 방사후 행동과 벼 수량에 미치는 영향)

  • Goh, B. D.;Maezono, Y.;Manda, M.;Song, Y. H.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.649-658
    • /
    • 2003
  • Early introducing the ducks into the paddy field involves a variety of environmental changes such as new surroundings and contact with water, so that some free-ranged ducks show behavioral and physiological changes indicative of stress or die from not adapted for new circumstances. Moreover, the free-ranged ducks was tread on the rice plant, and required a great deal of labor and time for captured the ducks after finishing the introducing. The aim of the present study was to examine the effect of accustoming and imprinting of duckling on behavior patterns, body weight gain and yield of the rice plant in paddy fields. Three paddy plots were used as control (no imprinting and no contact with people), taming (imprinting and regular handling) and roughness (handling roughly and strike terror to ducks) plots. Right after introducing the ducks into the paddy field, eating and moving behaviour of taming plot ducks tended to be longer time spend than that of other treatments. However, eating and moving time tended to be longer in the control than that of other two treatments on the 2 weeks after. Flighting distance was not showed in the free-ranging period taming plot, but the control plot was significantly (P<0.05) longer than the roughness plot. The captured time of free-ranged ducks tended to be shorter in the order of taming, control and roughness plots. Body weight gains was not significant. The number of rice plants damaged by free-ranging ducks in the taming plot were significantly (P<0.05) less than that in the control plot, but the yield and yield components of the rice plant were not differ among 3 treatments. These results indicated that the imprinting or regular handling and related treatments of duckling was reducing badly damage of rice plants, captured time and labor of free-ranged ducks in paddy field, although the working behavior of ducks and yield ability of the rice plants were not affected.