• 제목/요약/키워드: diclofenac

검색결과 103건 처리시간 0.027초

EDCs/PhACs의 단일,복합 조건에서의 GAC에 대한 흡착 연구 (Adsorption of selected endocrine disrupting compounds (EDCs)/pharmaceutical active compounds (PhACs) onto granular activated carbon (GAC) : effect of single and multiple solutes)

  • 정찬일;손주영;윤여민;오재일
    • 상하수도학회지
    • /
    • 제28권2호
    • /
    • pp.235-248
    • /
    • 2014
  • The widespread occurrence of dissolved endocrine disrupting compounds(EDCs) and pharmaceutical active compounds(PhACs) in water sources is of concern due to their adverse effects. To remove these chemicals, adsorption of EDCs/PhACs on granular activated carbon(GAC) was investigated, and bisphenol A, carbamazepine, diclofenac, ibuprofen, and sulfamethoxazole were selected as commonly occurring EDCs/PhACs in the aquatic environment. Various adsorption isotherms were applied to evaluate compatability with each adsorption in the condition of single-solute. Removal difference between individual and competitive adsorption were investigated from the physicochemical properties of each adsorbate. Hydrophobicity interaction was the main adsorption mechanism in the single-solute adsorption with order of maximum adsorption capacity as bisphenol A > carbamazepine > sulfamethoxazole > diclofenac > ibuprofen, while both hydrophobicity and molecular size play significant roles in competitive adsorption. Adsorption kinetic was also controled by hydrophobicity of each adsorbate resulting in higher hydrophobicity allowed faster adsorption on available adsorption site on GAC. EDCs/PhACs adsorption on GAC was determined as an endothermic reaction resulting in better adsorption at higher temperature ($40^{\circ}C$) than lower temperature ($10^{\circ}C$).

Effect of Exopolymers from Aureobasidium pullulans on Formalin-Induced Chronic Paw Inflammation in Mice

  • Kim, Hyeong-Dong;Cho, Hyung-Rae;Moon, Seung-Bae;Shin, Hyun-Dong;Yang, Kun-Ju;Park, Bok-Ryeon;Jang, Hee-Jeong;Kim, Lin-Su;Lee, Hyeung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권12호
    • /
    • pp.1954-1960
    • /
    • 2006
  • The effects of the exopolymers of Aureobasidium pullulans SM-2001 containing $\beta$-1,3/1,6-glucan on formalin-induced chronic inflammation were observed. Doses of 62.5, 125, and 250 mg/kg of the exopolymers were orally administered once a day for 10 days to formalin-induced chronic inflammatory mice (0.02 ml of 3.75% formalin was subaponeurotically injected into the left hind paw), and then the bilateral hind-paw thickness and volume were measured daily, while the paw wet-weight, histological profiles, and histomorphometrical analyses were conducted at termination. The results were compared with those for diclofenac, indomethacin, and dexamethasone (intraperitoneally injected) 15 mg/kg-dosed groups. All the animals were sacrificed 10 days after dosing. As a result of the formalin injection, a marked increase in the difference between the intact and formalin-induced paw thickness and volume was detected in the formalin-injected control compared with that in the intact control with time, plus at the time of sacrifice, the difference in the paw wet-weights was also dramatically increased. In a histological and histomorphometrical analysis, severe histological profiles of chronic inflammation were detected in the formalin-injected control with a marked increase in the thickness of the skin of the dorsum pedis. However, these formalin-induced chronic inflammatory changes were significantly and dose-dependently decreased by the exopolymer treatment. In conclusion, the exopolymer treatment inhibited the chronic inflammatory response induced by formalin injection in the mice. However, somewhat low efficacies were detected compared with those for the diclofenac-, indomethacin-, and dexamethasone-treated groups.

Hydroxylation of Compactin (ML-236B) by CYP105D7 (SAV_7469) from Streptomyces avermitilis

  • Yao, Qiuping;Ma, Li;Liu, Ling;Ikeda, Haruo;Fushinobu, Shinya;Li, Shengying;Xu, Lian-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권5호
    • /
    • pp.956-964
    • /
    • 2017
  • Compactin and pravastatin are competitive cholesterol biosynthesis inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase and belong to the statin drugs; however, the latter shows superior pharmacokinetic characteristics. Previously, we reported that the bacterial P450, CYP105D7, from Streptomyces avermitilis can catalyze the hydroxylation of 1-deoxypentalenic acid, diclofenac, and naringenin. Here, we demonstrate that CYP105D7 could also catalyze compactin hydroxylation in vitro. In the presence of both bacterial and cyanobacterial redox partner systems with an NADPH regeneration system, the reaction produced two hydroxylated products, including pravastatin (hydroxylated at the C6 position). The steady-state kinetic parameters were measured using the redox partners of putidaredoxin and its reductase. The $k_m$ and $k_{cat}$ values for compactin were $39.1{\pm}8.8{\mu}M$ and $1.12{\pm}0.09min^{-1}$, respectively. The $k_{cat}/K_m$ value for compactin ($0.029min^{-1}{\cdot}{\mu}M^{-1}$) was lower than that for diclofenac ($0.114min^{-1}{\cdot}{\mu}M^{-1}$). Spectroscopic analysis showed that CYP105D7 binds to compactin with a $K_d$ value of $17.5{\pm}3.6{\mu}M$. Molecular docking analysis was performed to build a possible binding model of compactin. Comparisons of different substrates with CYP105D7 were conclusively illustrated for the first time.

Efficacy Test of Polycan, a Beta-Glucan Originated from Aureobasidium pullulans SM-2001, on Anterior Cruciate Ligament Transection and Partial Medial Meniscectomy-Induced-Osteoarthritis Rats

  • Kim, Joo-Wan;Cho, Hyung-Rae;Ku, Sae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권2호
    • /
    • pp.274-282
    • /
    • 2012
  • The object of this study was to assess the efficacy of Polycan from Aureobasidium pullulans SM-2001, which is composed mostly of beta-1,3-1,6-glucan, on osteoarthritis (OA)-induced by anterior cruciate ligament transection and partial medial meniscectomy (ACLT&PMM). Three different dosages of Polycan (85, 42.5, and 21.25 mg/kg) were orally administered once a day for 84 days to male rats a week after ACLT&PMM surgery. Changes in the circumference and maximum extension angle of each knee, and in cartilage histopathology were assessed using Mankin scores 12 weeks after Polycan administration. In addition, cartilage proliferation was evaluated using bromodeoxyuridine (BrdU). As the result of ACLT&PMM, classic OA was induced with increases in maximum extension angles, edematous knees changes, and capsule thickness, as well as decreases in chondrocyte proliferation, cartilages degenerative changes, and loss of articular cartilage. However, these changes (except for capsule thickness) were markedly inhibited in all Polycan- and diclofenac sodium-treated groups compared with OA control. Although diclofenac sodium did not influence BrdU uptake, BrdU-immunoreactive cells were increased with all dosages of Polycan, which means that Polycan treatment induced proliferation of chondrocytes in the surface articular cartilage of the tibia and femur. The results obtained in this study suggest that 84 days of continuous oral treatment of three different dosages of Polycan led to lesser degrees of articular stiffness and histological cartilage damage compared with OA controls 91 days after OA inducement, suggesting that the optimal Polycan dosage to treat OA is 42.5 mg/kg based on the present study.

Functional Characterization of Pharmcogenetic Variants of Human Cytochrome P450 2C9 in Korean Populations

  • Cho, Myung-A;Yoon, Jihoon G.;Kim, Vitchan;Kim, Harim;Lee, Rowoon;Lee, Min Goo;Kim, Donghak
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.577-583
    • /
    • 2019
  • Human cytochrome P450 2C9 is a highly polymorphic enzyme that is required for drug and xenobiotic metabolism. Here, we studied eleven P450 2C9 genetic variants-including three novel variants F69S, L310V, and Q324X-that were clinically identified in Korean patients. P450 2C9 variant enzymes were expressed in Escherichia coli and their bicistronic membrane fractions were prepared The CO-binding spectra were obtained for nine enzyme variants, indicating P450 holoenzymes, but not for the M02 (L90P) variant. The M11 (Q324X) variant could not be expressed due to an early nonsense mutation. LC-MS/MS analysis was performed to measure the catalytic activities of the P450 2C9 variants, using diclofenac as a substrate. Steady-state kinetic analysis revealed that the catalytic efficiency of all nine P450 2C9 variants was lower than that of the wild type P450 2C9 enzyme. The M05 (R150L) and M06 (P279T) variants showed high $k_{cat}$ values; however, their $K_m$ values were also high. As the M01 (F69S), M03 (R124Q), M04 (R125H), M08 (I359L), M09 (I359T), and M10 (A477T) variants exhibited higher $K_m$ and lower $k_{cat}$ values than that of the wild type enzyme, their catalytic efficiency decreased by approximately 50-fold compared to the wild type enzyme. Furthermore, the novel variant M07 (L310V) showed lower $k_{cat}$ and $K_m$ values than the wild type enzyme, which resulted in its decreased (80%) catalytic efficiency. The X-ray crystal structure of P450 2C9 revealed the presence of mutations in the residues surrounding the substrate-binding cavity. Functional characterization of these genetic variants can help understand the pharmacogenetic outcomes.

Ononis spinosa alleviated capsaicin-induced mechanical allodynia in a rat model through transient receptor potential vanilloid 1 modulation

  • Jaffal, Sahar Majdi;Al-Najjar, Belal Omar;Abbas, Manal Ahmad
    • The Korean Journal of Pain
    • /
    • 제34권3호
    • /
    • pp.262-270
    • /
    • 2021
  • Background: Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel implicated in pain sensation in response to heat, protons, and capsaicin (CAPS). It is well established that TRPV1 is involved in mechanical allodynia. This study investigates the effect of Ononis spinosa (Fabaceae) in CAPS-induced mechanical allodynia and its mechanism of action. Methods: Mechanical allodynia was induced by the intraplantar (ipl) injection of 40 ㎍ CAPS into the left hind paw of male Wistar rats. Animals received an ipl injection of 100 ㎍ O. spinosa methanolic leaf extract or 2.5% diclofenac sodium 20 minutes before CAPS injection. Paw withdrawal threshold (PWT) was measured using von Frey filament 30, 90, and 150 minutes after CAPS injection. A molecular docking tool, AutoDock 4.2, was used to study the binding energies and intermolecular interactions between O. spinosa constituents and TRPV1 receptor. Results: The ipsilateral ipl injection of O. spinosa before CAPS injection increased PWT in rats at all time points. O. spinosa decreased mechanical allodynia by 5.35-fold compared to a 3.59-fold decrease produced by diclofenac sodium. The ipsilateral pretreatment with TRPV1 antagonist (300 ㎍ 4-[3-Chloro-2-pyridinyl]-N-[4-[1,1-dimethylethyl] phenyl]-1-piperazinecarboxamide [BCTC]) as well as the β2-adrenoreceptor antagonist (150 ㎍ butoxamine) attenuated the action of O. spinosa. Depending on molecular docking results, the activity of the extract could be attributed to the bindings of campesterol, stigmasterol, and ononin compounds to TRPV1. Conclusions: O. spinosa alleviated CAPS-induced mechanical allodynia through 2 mechanisms: the direct modulation of TRPV1 and the involvement of β2 adrenoreceptor signaling.

Analgesic, Anti-inflammatory and Diuretic Activities of Pisonia grandis

  • Anbalagan, N.;Rajinikanth, K.N.;Gnanasam, S. Kishore;Leonard, J. Thomas;Balakrishna, K.;Ramachandran, S.;Sridhar, S.K.
    • Natural Product Sciences
    • /
    • 제8권3호
    • /
    • pp.97-99
    • /
    • 2002
  • In the present study, Pisonia grandis leaves were extracted with chloroform and methanol. The extracts were vacuum dried to yield the respective chloroform (CE) and methanol extract (ME). CE and ME were evaluated for analgesic, anti-inflammatory (acute and chronic) and diuretic activity at 2 dose levels (250 and 500 mg/kg). Significant analgesic and anti-inflammatory activities were associated with CE and ME. CE at the dose level of 500 mg/kg was found to exhibit equivalent chronic anti-inflammatory activity as diclofenac at 50 mg/kg dose level. Significant diuretic activity was exhibited by ME. Graded dose response for all the activities were observed for the extracts.

Quantitation and Validation of Atorvastatin using HPLC-UV

  • Heine, Daniel;Yong, Chul-Soon;Kim, Jung-Sun
    • Journal of Pharmaceutical Investigation
    • /
    • 제37권3호
    • /
    • pp.187-192
    • /
    • 2007
  • A reversed phase HPLC analysis of atorvastatin (AS) standard solution was performed using diclofenac (DF) as internal standard. Column oven temperature, flow rate and the composition of the mobile phase were varied in order to determine a practical system setup using a C18 column and UV detector. Two C18 columns of different length were compared regarding their influence on the AS peak shape. Based on these preliminary experiments a validation study was performed utilizing a C18 column at $62^{\circ}C$ with a mobile phase consisting of sodium phosphate buffer (0.05 M, pH 4.0), methanol and acetonitrile (40:50:10, v/v/v). The detection limit for AS was $0.1{\mu}g/ml$ and inter- and intra-day calibration curves were linear over a concentration range of $0.2-50{\mu}g/ml$. Accuracy and precision were satisfactory in the AS concentration range of $0.5-50{\mu}g/ml$.

Improved Calibration for the Analysis of Emerging Contaminants in Wastewater Using Ultra High Performance Liquid Chromatography and Time-of-Flight Mass Spectrometry

  • Pellinen, Jukka;Lepisto, Riikka-Juulia;Savolainen, Santeri
    • Mass Spectrometry Letters
    • /
    • 제9권3호
    • /
    • pp.77-80
    • /
    • 2018
  • The focus of this paper is to present techniques to overcome certain difficulties in quantitative analysis with a time-of-flight mass spectrometer (TOF-MS). The method is based on conventional solid-phase extraction, followed by reversed-phase ultra high performance liquid chromatography of the extract, and mass spectrometric analysis. The target compounds included atenolol, atrazine, caffeine, carbamazepine, diclofenac, estrone, ibuprofen, naproxen, simazine, sucralose, sulfamethoxazole, and triclosan. The matrix effects caused by high concentrations of organic compounds in wastewater are especially significant in electrospray ionization mass spectroscopy. Internal-standard calibration with isotopically labeled standards corrects the results for many matrix effects, but some peculiarities were observed. The problems encountered in quantitation of carbamazepine and triclosan, due to nonlinear calibration were solved by changing the internal standard and using a narrower mass window. With simazine, the use of a quadratic calibration curve was the best solution.

Analgesic activity of the ethanolic extract of Aphanamixis polystachya bark

  • Hasan, Faizul;Rouf, Razina;Barua, Juwel;Uddin, Shaikh Jamal;Shilpi, Jamil Ahmad
    • Advances in Traditional Medicine
    • /
    • 제7권4호
    • /
    • pp.444-446
    • /
    • 2007
  • Ethanolic extract of Aphanamixis polystachya bark was used to investigate its analgesic activity by acetic acid induced writhing in mice. The bark extract exhibited statistically significant and dose dependent analgesic activity in mice. The bark extract at the doses of 250 and 500 mg/kg body weight showed 40.69% and 62.07% writhing inhibition respectively in mice whereas diclofenac-Na produced 75.17% writhing inhibition as a positive control.