Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.112

Functional Characterization of Pharmcogenetic Variants of Human Cytochrome P450 2C9 in Korean Populations  

Cho, Myung-A (Department of Biological Sciences, Konkuk University)
Yoon, Jihoon G. (Department of Pharmacology, Yonsei University College of Medicine)
Kim, Vitchan (Department of Biological Sciences, Konkuk University)
Kim, Harim (Department of Biological Sciences, Konkuk University)
Lee, Rowoon (Department of Biological Sciences, Konkuk University)
Lee, Min Goo (Department of Pharmacology, Yonsei University College of Medicine)
Kim, Donghak (Department of Biological Sciences, Konkuk University)
Publication Information
Biomolecules & Therapeutics / v.27, no.6, 2019 , pp. 577-583 More about this Journal
Abstract
Human cytochrome P450 2C9 is a highly polymorphic enzyme that is required for drug and xenobiotic metabolism. Here, we studied eleven P450 2C9 genetic variants-including three novel variants F69S, L310V, and Q324X-that were clinically identified in Korean patients. P450 2C9 variant enzymes were expressed in Escherichia coli and their bicistronic membrane fractions were prepared The CO-binding spectra were obtained for nine enzyme variants, indicating P450 holoenzymes, but not for the M02 (L90P) variant. The M11 (Q324X) variant could not be expressed due to an early nonsense mutation. LC-MS/MS analysis was performed to measure the catalytic activities of the P450 2C9 variants, using diclofenac as a substrate. Steady-state kinetic analysis revealed that the catalytic efficiency of all nine P450 2C9 variants was lower than that of the wild type P450 2C9 enzyme. The M05 (R150L) and M06 (P279T) variants showed high $k_{cat}$ values; however, their $K_m$ values were also high. As the M01 (F69S), M03 (R124Q), M04 (R125H), M08 (I359L), M09 (I359T), and M10 (A477T) variants exhibited higher $K_m$ and lower $k_{cat}$ values than that of the wild type enzyme, their catalytic efficiency decreased by approximately 50-fold compared to the wild type enzyme. Furthermore, the novel variant M07 (L310V) showed lower $k_{cat}$ and $K_m$ values than the wild type enzyme, which resulted in its decreased (80%) catalytic efficiency. The X-ray crystal structure of P450 2C9 revealed the presence of mutations in the residues surrounding the substrate-binding cavity. Functional characterization of these genetic variants can help understand the pharmacogenetic outcomes.
Keywords
Cytochrome P450; P450 2C9; Diclofenac; Polymorphism; Pharmacogenetics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sullivan-Klose, T. H., Ghanayem, B. I., Bell, D. A., Zhang, Z. Y., Kaminsky, L. S., Shenfield, G. M., Miners, J. O., Birkett, D. J. and Goldstein, J. A. (1996) The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 6, 341-349.   DOI
2 Van Booven, D., Marsh, S., McLeod, H., Carrillo, M. W., Sangkuhl, K., Klein, T. E. and Altman, R. B. (2010) Cytochrome P450 2C9- CYP2C9. Pharmacogenet. Genomics 20, 277-281.   DOI
3 Williams, P. A., Cosme, J., Ward, A., Angove, H. C., Matak Vinkovic, D. and Jhoti, H. (2003) Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424, 464-468.   DOI
4 Cho, M. A., Han, S., Lim, Y. R., Kim, V., Kim, H. and Kim, D. (2019) Streptomyces cytochrome P450 enzymes and their roles in the biosynthesis of macrolide therapeutic agents. Biomol. Ther. (Seoul) 27, 127-133.   DOI
5 Gray, I. C., Nobile, C., Muresu, R., Ford, S. and Spurr, N. K. (1995) A 2.4-megabase physical map spanning the CYP2C gene cluster on chromosome 10q24. Genomics 28, 328-332.   DOI
6 Crespi, C. L. and Miller, V. P. (1997) The R144C change in the CYP2C9* 2 allele alters interaction of the cytochrome P450 with NADPH:cytochrome P450 oxidoreductase. Pharmacogenetics 7, 203-210.   DOI
7 Dai, D. P., Xu, R. A., Hu, L. M., Wang, S. H., Geng, P. W., Yang, J. F., Yang, L. P., Qian, J. C., Wang, Z. S., Zhu, G. H., Zhang, X. H., Ge, R. S., Hu, G. X. and Cai, J. P. (2014) CYP2C9 polymorphism analysis in Han Chinese populations: Building the largest allele frequency database. Pharmacogenomics J. 14, 85-92.   DOI
8 Danielson, P. B. (2002) The cytochrome P450 superfamily: Biochemistry, evolution and drug metabolism in humans. Curr. Drug Metab. 3, 561-597.   DOI
9 Delozier, T. C., Kissling, G. E., Coulter, S. J., Dai, D., Foley, J. F., Bradbury, J. A., Murphy, E., Steenbergen, C., Zeldin, D. C. and Goldstein, J. A. (2007) Detection of human CYP2C8, CYP2C9, and CYP2J2 in cardiovascular tissues. Drug Metab. Dispos. 35, 682-688.   DOI
10 DeLozier, T. C., Lee, S. C., Coulter, S. J., Goh, B. C. and Goldstein, J. A. (2005) Functional characterization of novel allelic variants of CYP2C9 recently discovered in Southeast Asians. J. Pharmacol. Exp. Ther. 315, 1085-1090.   DOI
11 Guengerich, F. P. (2015) Human cytochrome P450 enzymes. In Cytochrome P450: Structure, Mechanism, and Biochemistry (P. R. Ortiz de Montellano, Ed.), pp. 523-785. Springer, London.
12 Guengerich, F. P., Martin, M. V., Sohl, C. D. and Cheng, Q. (2009) Measurement of cytochrome P450 and NADPH-cytochrome P450 reductase. Nat. Protoc. 4, 1245-1251.   DOI
13 Guengerich, F. P., Waterman, M. R. and Egli, M. (2016) Recent structural insights into cytochrome P450 function. Trends Pharmacol. Sci. 37, 625-640.   DOI
14 King, B. P., Khan, T. I., Aithal, G. P., Kamali, F. and Daly, A. K. (2004) Upstream and coding region CYP2C9 polymorphisms: Correlation with warfarin dose and metabolism. Pharmacogenetics 14, 813- 822.   DOI
15 Guo, Y., Wang, Y., Si, D., Fawcett, P. J., Zhong, D. and Zhou, H. (2005) Catalytic activities of human cytochrome P450 2C9*1, 2C9*3 and 2C9*13. Xenobiotica 35, 853-861.   DOI
16 Han, S. M., Park, J., Lee, J. H., Lee, S. S., Kim, H., Han, H., Kim, Y., Yi, S., Cho, J. Y., Jang, I. J. and Lee, M. G. (2017) Targeted next-generation sequencing for comprehensive genetic profiling of pharmacogenes. Clin. Pharmacol. Ther. 101, 396-405.   DOI
17 Imai, J., Ieiri, I., Mamiya, K., Miyahara, S., Furuumi, H., Nanba, E., Yamane, M., Fukumaki, Y., Ninomiya, H., Tashiro, N., Otsubo, K. and Higuchi, S. (2000) Polymorphism of the cytochrome P450 (CYP) 2C9 gene in Japanese epileptic patients: genetic analysis of the CYP2C9 locus. Pharmacogenetics 10, 85-89.   DOI
18 Jeong, D., Park, H. G., Lim, Y. R., Lee, Y., Kim, V., Cho, M. A. and Kim, D. (2018) Terfenadine metabolism of human cytochrome P450 2J2 containing genetic variations (G312R, P351L and P115L). Drug Metab. Pharmacokinet. 33, 61-66.   DOI
19 Kim, V., Yeom, S., Lee, Y., Park, H. G., Cho, M. A., Kim, H. and Kim, D. (2018) In vitro functional analysis of human cytochrome P450 2A13 genetic variants: P450 2A13*2, *3, *4, and *10. J. Toxicol. Environ. Health A 81, 493-501.   DOI
20 Lee, I. S. and Kim, D. (2011) Polymorphic metabolism by functional alterations of human cytochrome P450 enzymes. Arch. Pharm. Res. 34, 1799-1816.   DOI
21 Lee, Y., Park, H. G., Kim, V., Cho, M. A., Kim, H., Ho, T. H., Cho, K. S., Lee, I. S. and Kim, D. (2018) Inhibitory effect of alpha-terpinyl acetate on cytochrome P450 2B6 enzymatic activity. Chem. Biol. Interact. 289, 90-97.   DOI
22 Shimada, T., Yamazaki, H., Mimura, M., Inui, Y. and Guengerich, F. P. (1994) Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther. 270, 414-423.
23 Maekawa, K., Adachi, M., Matsuzawa, Y., Zhang, Q., Kuroki, R., Saito, Y. and Shah, M. B. (2017) Structural basis of single-nucleotide polymorphisms in cytochrome P450 2C9. Biochemistry 56, 5476- 5480.   DOI
24 Maekawa, K., Fukushima-Uesaka, H., Tohkin, M., Hasegawa, R., Kajio, H., Kuzuya, N., Yasuda, K., Kawamoto, M., Kamatani, N., Suzuki, K., Yanagawa, T., Saito, Y. and Sawada, J. (2006) Four novel defective alleles and comprehensive haplotype analysis of CYP2C9 in Japanese. Pharmacogenet. Genomics 16, 497-514.   DOI
25 Miners, J. O. and Birkett, D. J. (1998) Cytochrome P4502C9: An enzyme of major importance in human drug metabolism. Br. J. Clin. Pharmacol. 45, 525-538.   DOI
26 Nebert, D. W. and Russell, D. W. (2002) Clinical importance of the cytochromes P450. Lancet 360, 1155-1162.   DOI
27 Parikh, A., Gillam, E. M. and Guengerich, F. P. (1997) Drug metabolism by Escherichia coli expressing human cytochromes P450. Nat. Biotechnol. 15, 784-788.   DOI
28 Si, D., Guo, Y., Zhang, Y., Yang, L., Zhou, H. and Zhong, D. (2004) Identification of a novel variant CYP2C9 allele in Chinese. Pharmacogenetics 14, 465-469.   DOI
29 Steward, D. J., Haining, R. L., Henne, K. R., Davis, G., Rushmore, T. H., Trager, W. F. and Rettie, A. E. (1997) Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics 7, 361-367.   DOI