• Title/Summary/Keyword: diamond thin film

Search Result 235, Processing Time 0.025 seconds

Fabrication and Properties of Diamond Thin-Film from N-Hexane by Using Microwave Plasma Process (Microwave Plasma Process에 의한 N-Hexane으로부터 다이아몬드 박막제작 및 특성)

  • Han, Sang-Bo;Kwon, Tae-Jin;Park, Sang-Hyun;Park, Jae-Youn;Lee, Seung-Ji
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.79-87
    • /
    • 2011
  • In this paper, the best conditions for the deposition of the high quality diamond thin-film from N-hexane as a carbon source in the microwave plasma process was carried out. Major parameters are the deposition time, flow rates of oxygen and hexane. The deposition time for the steady state thin-film was required more than 4[h], and the suitable flow rates of hexane and oxygen for the high-quality thin-film are 0.4[sccm] and 0.1~0.2[sccm], respectively. In addition, amorphous carbons such as DLC and graphite were grown by increasing the flow rate of hexane, and it decreased by increasing the flow rate of oxygen. Specifically, the growth rate is about 1.5[${\mu}mh-1$] under no addition of oxygen and it decreased about 60[%] as ca. 1.0[${\mu}mh-1$] with oxygen.

The Characteristic of Diamond Thin Films on WC-Co by RF PACVD (RF PACVD법에 의한 WC-Co에 성장된 다이아몬드 박막의 특성)

  • Lee, S.;Kim, D.I.;Yoon, J.H.;Park, S.H.;Kim, Y.B.;Kim, B.Y.;Kang, D.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1699-1701
    • /
    • 1999
  • We prepared diamond thin films on WC-Co substrate in $H_2-CH_4-O_2$ gas mixture using 13.56MHz RF PACVD. Scanning electron microscopy, X-ray diffraction and Raman spectroscopy were used to analyze the nature of thin film. and Rockwell test to analyze the adhesion between thin film and substrate. The good diamond quality and adhesion was appeared with cemented tungsten carbide substrate treated with oxygen plasma.

  • PDF

Wear behaviors of diamond thin films deposited on WC-Co substrate (초경합금 기판 위에 성장된 다이아몬드 박막의 내마모 특성)

  • 김대일;이상희;윤종현;김병수;이철화;이덕출;박종관;박상현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.398-401
    • /
    • 1999
  • We prepared diamond thin films on WC-Co substrate in a mixtured $H_2-CH_4-O_2$, gas, using 13.%MHz RF PACVD. Scanning electron microscopy, X-ray diffraction and Rarnan spectroscopy were used to analyze the characteristics of thin film, and tribometer of ball-on-disk type were used to test the wear resistance between thin film and substrate. The good diamond quality and wear resistance was appeared with cemented tungsten carbide substrate treated with oxygen plasma.

  • PDF

Bonding and Etchback Silicon-on-Diamond Technology

  • Jin, Zengsun;Gu, Changzhi;Meng, Qiang;Lu, Xiangyi;Zou, Guangtian;Lu, Jianxial;Yao, Da;Su, Xiudi;Xu, Zhongde
    • The Korean Journal of Ceramics
    • /
    • v.3 no.1
    • /
    • pp.18-20
    • /
    • 1997
  • The fabrication process of silicon-diamond(SOD) structure wafer were studied. Microwave plasma chemical vapor deposition (MWPCVD) and annealing technology were used to synthesize diamond film with high resistivity and thermal conductivity. Bonding and etchback silicon-on-diamond (BESOD) were utilized to form supporting substrate and single silicon thin layer of SOD wafer. At last, a SOD structure wafer with 0.3~1$\mu\textrm{m}$ silicon film and 2$\mu\textrm{m}$ diamond film was prepared. The characteristics of radiation for a CMOS integrated circuit (IC) fabricated by SOD wafer were studied.

  • PDF

Real-time Spectroscopic Ellipsometry studies of the Effect of Preparation Parameters on the Coalescence Characteristics of Microwave-PECVD Diamond Films

  • Hong, Byungyou
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.49-54
    • /
    • 1998
  • The growth of diamond films in plasma enhanced chemical vapor deposition(PECVD) processes requires high substrate temperatures and gas pressures, as well as high-power excitation of the gas source. Thus determining the substrate temperature in this severe environment is a challenge. The issue is a critical one since substrate temperature is a key parameter for understanding and optimizing diamond film growth. The precise Si substrate temperature calibration based on rapid-scanning spectroscopic ellipsometry have been developed and utilized. Using the true temperature of the top 200 ${\AA}$ of the Si substrate under diamond growth conditions, real time spectroellipsometry (RTSE) has been performed during the nucleation and growth of nanocrystallind thin films prepared by PECVD. RTSE shows that a significant volume fraction of nondiamond(or{{{{ {sp }^{2 } -bonded}}}}) carbon forms during thin film coalescence and is trapped near the substrate interface between ∼300 ${\AA}$ diamond nuclei.

  • PDF

SAW Filter Made of ZnO/Nanocrystalline Diamond Thin Films (ZnO/나노결정다이아몬드 적층 박막 SAW 필터)

  • Jung, Doo-Young;Kang, Chan-Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.5
    • /
    • pp.216-219
    • /
    • 2009
  • A surface acoustic wave (SAW) filter structure was fabricated employing $4{\mu}m$ thick nanocrystalline diamond (NCD) and $2.2{\mu}m$ thick ZnO films on Si wafer. The NCD film was deposited in an $Ar/CH_4$ gas mixture by microwave plasma chemical vapor deposition method. The ZnO film was formed over the NCD film in an RF magnetron sputter using ZnO target and $Ar/O_2$ gas. On the top of the two layers, copper film was deposited by the RF sputter and inter digital transducer (IDT) electrode pattern (line/space : $1.5/1.5{\mu}m$) was defined by the photolithography including a lift-off etching process. The fabricated SAW filter exhibited the center frequency of 1.66 GHz and the phase velocity of 9,960 m/s, which demonstrated that a giga Hertz SAW filter can be realized by utilizing the nanocrystalline diamond thin film.

Crystalline Growth Properties of Diamond Thin Film Prepared by MPCVD

  • Park Soo-Gil;Kim Gyu-Sik;Einaga Yasuaki;Fujishima Akira
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.4
    • /
    • pp.200-203
    • /
    • 2000
  • Boron doped conducting diamond thin films were grown on Si substrate by microwave plasma chemical vapor deposition from a gaseous feed of hydrogen, acetone/methanol and solid boron. The doping level of boron was ca. $10^2ppm\;(B/C)$. The Si substrate was tilted ca. $10^{\circ}$ to make Si substrate, which have different height and temperature. Experimental results showed that different crystalline of diamond thin films were made by different temperature of Si substrate. There appeared $3\~4$ steps of different crystalline morphology of diamond. To characterize the boron-doped diamond thin film, Raman spectroscopy was used for identification of crystallinity. To survey surface morphology, microscope was used. Grain size was changed gradually by different temperature due to different height. The Raman spectrum of film exhibited a sharp peak at $1334cm^{-1}$, which is characteristic of crystalline diamond. The lower position of diamond film position, the more non-diamond component peak appeared near $1550 cm^{-1}$.

Effect of Surfactant in Electroless Ni-B Plating for Coating on the Diamond Powder (다이아몬드 분말상에 무전해 Ni-B 도금을 위한 계면활성제의 영향)

  • Yang, Changyol;Yu, Si-Young;Moon, Hwan-Gyun;Lee, Jung-Ho;Yoo, Bongyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.3
    • /
    • pp.177-182
    • /
    • 2017
  • The properties of electroless Ni-B thin film on diamond powder with different parameters (temperature, pH, surfactant etc.) were studied. The surface morphology, structure and composition distribution of the Ni-B film were observed by field effect scanning electron microscope (FE-SEM), energy-dispersive spectrometer (EDS), X-ray diffraction (XRD) and Auger electron spectroscopy (AES). The growth rate of Ni-B film was increased with increase of bath temperature. The B content in Ni-B film was reduced with increase of bath pH. As a result the structure of Ni-B film was changed from amorphous to crystalline structure. The PVP in solution plays multi-functional roles as a dispersant and a stabilizer. The Ni-B film deposited with adding 0.1 mM-PVP was strongly introduced an amorphous structure with higher B content (25 at.%). Also the crystallite size of Ni-B film was reduced from 12.7 nm to 5.4 nm.

Thin film growth by charged clusters

  • Hwang, N.M.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.33-33
    • /
    • 1998
  • Invisible charged clusters are suggested to form in the gas phase and to become the growth unit in the thin film process. Similar suggestion had been made by Glasner el al. in the crystal growth of KBr and KCL in the solution where the lead ions were added. The charged cluster model, which was suggested in the diamond CVD process by our group, will be extended to the other thin film processes. It will be shown based on both the theoretical analysis and the experimental evidences that the charged clusters are formed in the gas phase and become the growth unit of the crystal in the thin film process.

  • PDF