• Title/Summary/Keyword: diamond thin film

Search Result 235, Processing Time 0.026 seconds

The Spectroscopic Ellipsometry Application to the Diamond Thin Film Growth Using Carbon Monoxide(CO) as a Carbon Source (탄소의 원료로 일산화탄소를 사용한 다이아몬드 박막 성장 관찰에 대한 분광 Ellipsometry의 응용)

  • 홍병유
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.5
    • /
    • pp.371-377
    • /
    • 1998
  • The plasma chemical vapor deposition is one of the most utilized techniques for the diamond growth. As the applications of diamond thin films prepared by plasma chemical vapor deposition(CVD) techniques become more demanding, improved fine-tuning and control of the process are required. The important parameters in diamond film deposition include the substrate temperature, $CO/H_2$gas flow ratio, total gas pressure, and gas excitation power. With the spectroscopic ellipsometry, the substrate temperature as well as the various parameters of the film can be determined without the physical contact and the destructiveness under the extreme environment associated with the diamond film deposition. Through this paper, the important parameters during the diamond film growth using $CO+H_2$are determined and it is shown that $sp^2$ C in the diamond film is greatly reduced.

  • PDF

Influence of the Thin-Film Ag Electrode Deposition Thickness on the Current Characteristics of a CVD Diamond Radiation Detector

  • Ban, Chae-Min;Lee, Chul-Yong;Jun, Byung-Hyuk
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.131-136
    • /
    • 2018
  • Background: We investigated the current characteristics of a thin-film Ag electrode on a chemical vapor deposition (CVD) diamond. The CVD diamond is widely recognized as a radiation detection material because of its high tolerance against high radiation, stable response to various dose rates, and good sensitivity. Additionally, thin-film Ag has been widely used as an electrode with high electrical conductivity. Materials and Methods: Considering these properties, the thin-film Ag electrode was deposited onto CVD diamonds with varied deposition thicknesses (${\fallingdotseq}50/98/152/257nm$); subsequently, the surface thickness, surface roughness, leakage current, and photo-current were characterized. Results and Discussion: The leakage current was found to be very low, and the photo-current output signal was observed as stable for a deposited film thickness of 98 nm; at this thickness, a uniform and constant surface roughness of the deposited thin-film Ag electrode were obtained. Conclusion: We found that a CVD diamond radiation detector with a thin-film Ag electrode deposition thickness close to 100 nm exhibited minimal leakage current and yielded a highly stable output signal.

Preparation of Diamond Thin film for Electric Device and Crystalline Growth (전자 디바이스용 다이아몬드 박막의 제조 및 결정성장 특성)

  • Kim, Gru-Sik;Park, Soo-Gil;Son, Won-Keun;Fujishiama, Akira
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1720-1723
    • /
    • 2000
  • Boron doped conducting diamond thin film were grown on Si substrate by microwave plasma chemical vapor deposition from a gaseous feed of hydrogen, acetone/methanol and solid boron. The doping level of boron was controlled from 0ppm to $10^4$ppm (B/C). The Si substrate was tilted ca. 10$^{\circ}$ to make Si substrate have different height and temperature. Experimental results show that same condition but different temperature of Si substrate by height made different crystalline of diamond thin film. There were appeared 3$\sim$4 step of different crystalline morphology of diamond. To characterize the boron-doped diamond thin film, Raman spectroscopy was used for identification of crystallinity. To survey surface morphology, microscope was used. Grain size was changed gradually by different temperature due to different height. The Raman spectrum of film exhibited a sharp peak at 1334$cm^{-1}$, which is characteristic of crystalline diamond. The lower position of diamond film position, the more non-diamond component peak appeared near 1550$cm^{-1}$.

  • PDF

The Effect of Initial DC Bias Voltage on Highly Oriented Diamond Film Growth on Silicon

  • Dae Hwan Kang;Seok Hong Min;Ki Bum Kim
    • The Korean Journal of Ceramics
    • /
    • v.3 no.1
    • /
    • pp.13-17
    • /
    • 1997
  • It is identified that the diamond films grown o bias-treated (100) silicon showed different surface morphologies and film textures according to the initial applied dc bias voltage at the same growth condition. The highly oriented diamond film (HODF) was successfully grown on -200 V bias-treated silicon substrate in which the heteroepitaxial relation of $(100)_{dimond}//(100)_{si}\; and\; [110]_{diamond}//[110]_{si}$ was identified. On the contrary, the heteroepitaxial relation was considerably disturbed in the samples bias-voltage was a key factor in growing the highly oriented diamond film on (100) silicon substrate. Considering the experimental results, we proposed a new model about heteroepitaxial diamond growth on silicon, in which 9 diamond unit cell are matched with 4 silicon cells and the bond covalency of both atoms is satisfied via the intermediate layer at the interface as well.

  • PDF

Deposition of diamond film at low pressure using the RF plasma CVD (고주파 플라즈마 CVD에 의한 저 압력에서의 다이아몬드 막의 성장)

  • Koo, Hyo-Geun;Park Sang-Hyun;Park Jae-Yoon;Kim Kyoung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.2
    • /
    • pp.49-56
    • /
    • 2001
  • Diamond thin films have been deposited on the silicon substrate by inductively coupled radio frequency plasma enhanced chemical vapor deposition system. The morphological features of thin films depending on methane concentration and deposition time have been studied by scanning electron microscopy and Raman spectroscopy. The diamond particles deposited uniformly on silicon substrate($10{\times}10[mm^2]$) at the pressure of 1[torr], a methane concentration of 1[%], a hydrogen flow rate of 60[sccm], a substrate temperature of $840\{sim}870[^{\circ}C]$, an input power of 1[kw], and a deposition time of 1[hour]. With increasing deposition time, the diamond particles grew, and than about 3 hours have passed, the graphitic phase carbon thin film with "cauliflower-like" morphology deposited on the diamond thin films.

  • PDF

A Study on Liquid Crystal Alignment effects by UV Alignment Method on a Diamond-Like-Carbon Thin Film Surface (Diamond-Like-Carbon 박막표면에 UV 배향법을 이용한 액정 배향 효과에 관한 연구)

  • 황정연;조용민;서대식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.3
    • /
    • pp.214-218
    • /
    • 2003
  • We studied the nematic liquid crystal (NLC) aligning capabilities by the UV alignment method on a diamond like carbon (DLC) thin film surface A good LC alignment by UV exposure on the DLC thin film surface at 200${\AA}$ of layer thickness was achieved. Also, a good LC alignment by the UV alignment method on the DLC thin film surface was observed at annealing temperature of 180$^{\circ}C$. However, the alignment defect of the NLC was observed above annealing temperature of 200$^{\circ}C$. Consequently, the good thermal stability of LC alignment by the UV alignment method o the DLC thin film surface can be achieved.

Liquid Crystal Alignment Effects using a Diamond-like Carbon Thin Film (Diamond-like Carbon 박막을 이용한 액정 배향 효과)

  • 황정연;조용민;서대식;노순준;이대규
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.5
    • /
    • pp.419-422
    • /
    • 2002
  • We studied the nematic liquid crystal (NLC) aligning capabilities using the new alignment material of a diamond like carbon (DLC) thin film. A high pretilt angle of about $3.5^{\circ}$ by ion beam(IB) exposure on the DLC thin film surface was measured. A good LC alignment by the IB alignment method on the DLC thin film surface was observed at annealing temperature of $200^{\circ}C$, and the alignment defect of the NLC was observed above annealing temperature of $220^{\circ}C$. Consequently, the high NLC pretilt angle and the good thermal stability of LC alignment by the IB alignment method on the DLC thin film surface can be achieved.

Preparation and Crystalline Growth Properties of Diamond Thin Film by Microwave Plasma CVD (MWPCVD법에 의한 다이아몬드 박막의 제조 및 결정성장 특성)

  • ;;A. Fujishima
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.905-908
    • /
    • 2000
  • The growth properties of diamond grain were examined by Raman spectroscopy and microscope images. Diamond thin films were prepared on single crystal Si wafers by microwave Plasma chemical vapor deposition. Preparation conditions, substrate temperature, boron concentration and deposition time were controlled differently. Prepared diamond thin films have different surface morphology and grain size respectively Diamond grain size was gradually changed by substrate temperature. The biggest diamond grain size was observed in the substrate, which has highest temperature. The diamond grain size by boron concentration was slightly changed but morphology of diamond grain became amorphous according to increasing of boron concentration. Time was also needed to be a big diamond grain. However, time was not a main factor for being a big diamond grain. Raman spectra of diamond film, which was deposited at high substrate temperature, showed sharp peaks at 1334$cm^{-1}$ / and these were characteristics of crystalline diamond. A broad peak centered at 1550$cm^{-1}$ /, corresponding to non-diamond component (sp$^2$carbon), could be observed in the substrate, which has low temperature.

  • PDF

A Study on the Surface Polishing of Diamond Thin Films by Thermal Diffusion (열확산에 의한 다이아몬드 박막의 표면연마에 관한 연구)

  • Bae, Mun Ki;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.2
    • /
    • pp.75-80
    • /
    • 2021
  • The crystal grains of polycrystalline diamond vary depending on deposition conditions and growth thickness. The diamond thin film deposited by the CVD method has a very rough growth surface. On average, the surface roughness of a diamond thin film deposited by CVD is in the range of 1-100 um. However, the high surface roughness of diamond is unsuitable for application in industrial applications, so the surface roughness must be lowered. As the surface roughness decreases, the scattering of incident light is reduced, the heat conduction is improved, the mechanical surface friction coefficient can be lowered, and the transmittance can also be improved. In addition, diamond-coated cutting tools have the advantage of enabling ultra-precise machining. In this study, the surface roughness of diamond was improved by thermal diffusion reaction between diamond carbon atoms and ferrous metals at high temperature for diamond thin films deposited by MPCVD.

Thin Film Adhesion and Cutting Performance in Diamond-Coated Carbide Tools

  • Jong Hee Kim;Dae Young Jung;Hee Kap Oh
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.105-109
    • /
    • 1997
  • The effects of surface conditions of the C-2 cemented carbide substrate on the adhesion of diamond film were investigated. The substrates were pretreated for different times with Murakami's reagent and then the acid solution of an H2SO4-H2O2. The adhesion strength was estimated by a peeling area around the Rockwell-A indentation. The cutting performance of the diamond-coated tools was evaluated by measuring flank wears in dry turning of Al-17% Si alloy. The morphology of deposited diamond crystallites was dominated by (111) and (220) surfaces with a cubooctahedral shape. The diamond film quality was hardly affected by the surface conditions of the substrate. The variation of tool life with longer substrate etching times resulted from a compromies between the increase of film adhesion at the interface and the decrease of toughness at the substrate surface. The coated tools were mainly deteriorated by chipping and flaking of the diamond film form a lock of adhesion strength, differently from the wear phenomena of PCD tools.

  • PDF