• Title/Summary/Keyword: diameter size distribution

Search Result 701, Processing Time 0.027 seconds

Theoretical Study on the Effects of Particle Size Distribution on the Optical Properties of Colloidal Gold (입자 크기 분포가 금 콜로이드의 광학성질에 미치는 영향에 대한 이론 연구)

  • Kim, Hyo-Jeong;Saha Leton Chandra;Jang, Joon-Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.5
    • /
    • pp.407-411
    • /
    • 2007
  • Mie theory has been used to calculate the extinction of a gold nanoparticle in water by varying its diameter from 1 to 1000 nm. Utilizing this size-dependent theoretical spectrum, we have calculated the extinction spectrum of a colloidal gold by taking into account the size distribution of particle. Such calculation is in better agreement with experiment than the calculation without considering the size distribution. A least-squares fitting is used to deduce the size distribution from an experimental extinction spectrum. For particles with their diameters ranging from 10 to 28 nanometers, the fitting gives reasonable agreement with the size distribution obtained from tunneling electron microscope images.

A Study on the Simultaneous Measurement of Droplet Size and Velocity in a Diesel Fuel Spray (디젤 분무(噴霧) 액적(液滴)의 크기와 속도(速度) 동시계측(同時計測)에 관한 연구(硏究))

  • Chang, Y.J.;Jeon, C.H.;Park, H.l.;Kim, H.K.;Kim, S.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.11-22
    • /
    • 1994
  • The pupose of this study is to measure droplet size and velocity simultaneously for a transient diesel fuel spray in a quiescent chamber at atmospheric temperature and pressure. Generally, diesel combustion phenomena is mainly governed by characteristics of injection system and fuel spray. Therefore we need to clarify these characteristics for developing more economical diesel systems. In this study, correlation between droplet size and velocity was measured at downstream distance from nozzle. Governing parameters are pump speed and fuel quantity for the detailed nature in this transient diesel fuel spray. It is observed effect to the droplet size and velocity distribution. Velocity(peak, mean, rms), number density and droplet size were investigated simulaneously using PDA in the spray. Various results are presented to illustrate the effects of operation factors and correlation between the droplet diameter and velocity.

  • PDF

Size Distributions and Respirable Mass Fraction of Exposed Dust in Work Environment (일부 분진 작업장에서의 폭로분진의 입경분포와 호흡성 분진 비율)

  • 김영식
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.25-31
    • /
    • 1992
  • Authors Investigated the particulate size distribution in work environment of Banwol and Changwon industry complex. Size distributions of particles exposured to workers in welding and in grounding process were evaluated by personal cascade impactors. Personal air samplers with personal cascade impactor were attached to the workers. The mass median diameter measured in welding sites were 0.3 to 3.BUm and in grinding sites were 1.5 to 2.6htn. Respirable matter fractions were ranged 32.67 to 65.055. Respirable matter fractions were calculated from the sixte distribution data by the respirable particle mass of the ACGIH criteria. The study relating to characteristics of particle of other industries and particulate sixte distribution is more needed in the near future

  • PDF

Effect of liquid viscosity on the degree of uniformity of drops from swirl spray nozzles (와류 분무 노즐에 의해 형성되는 액적들의 균일도에 액체의 점도가 미치는 영향)

  • 이상용;김인구;조한권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.538-546
    • /
    • 1989
  • Effect of liquid viscosity was studied experimentally on the drop size distributions of the liquid sprays from swirl atomizers. Glycerine-Water mixtures were used as test fluids for the experiments. Drop sizes of the liquid sprays were measured with the light scattering method. The concept of the standard deviation was introduced to represent the degree of uniformity of the drop size distributions. Experimental results show that the spray drops become coarser and less uniform with the liquid of higher viscosity. The effect of viscosity on the Sauter mean diameter and the standard deviation appeared to be more significant with the lower injection pressure. It was also confirmed that the Sauter mean diameter increases with the increase of the liquid viscosity and with the decrease of the injection pressure.

Wall Impingement Behavior and Droplet Size Measurement in Diesel Spray (디젤분무의 벽면충돌거동 및 분무입경측정)

  • 이장희;김태권;최인수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.39-49
    • /
    • 1994
  • An experimental investigation was undertaken in a diesel spray to evaluate wall impingement behavior and droplet size distribution. Emphasis is placed on the possibility of the application for new combustion type which is based on OSKA-D type. Visualization were employed using optical scheme which was a spark shadowgraphy to observe the behavior of wall impingement caused by diesel spray vertically injected at the center of the combustion chamber. Droplet size measurements using Malvern system were made to quantify the visual observations with surface diameter of impingement. The effects of the surface dia. variation on the droplet size during injection with the wall impingement spray are discussed. It was found that for the wall impingement spray the droplet size becomes greatly small rather than the spray without the wall impingement and the droplet deposition rate of the injection fuel is decreased as the surface area of impingement becomes small.

  • PDF

An Experimental Study on Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow (아음속 수직분사제트에서 액적크기 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Kim, Jin-Ki;Hwang, Yong-Seok;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.115-122
    • /
    • 2007
  • The spray characteristics and drop size measurements have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle and atomize. internal flows were varied to provide of jet operation conditions. The injector internal flow was classified as three modes such as a non-cavitation flow, cavitation, and hydraulic flip flows. Pulsed Shadowgraph Photography measurement was used to determine the spatial distribution of the spray droplet diameter in a subsonic crossflow of air. And this study also obtains the SMD (Sauter Mean Diameters) distribution by using Planar Liquid Laser Induced Fluorescence technique. The objectives of this research are get a droplet distributions and drop size measurements of each condition and compare with the other flow effects. As the result, This research has been showned that droplet size were spatially dependent on air-stream velocity, fuel injection velocity, injection angle effects, and normalized distance from the injector exit length(x/d, y/d). There are also different droplet size characteristics between cavitation, hydraulic flip and the non-cavitation flows.

  • PDF

An Experimental Study on Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow (수직분사제트에서 액적크기특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Kim, Jin-Ki;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.59-63
    • /
    • 2006
  • A direct photograph measurement technique was used to determine the spatial distribution of the spray droplet diameter in subsonic crossflow and it also obtain that SMD distribution by using PLLIF technique. The injector internal flow was classified as three modes such as a normal, cavitation, and hydraulic flip. The objectives of this research are getting a droplet distribution and drop size measurement of normal flow and compare with the other flow effects. Although the study showed visually that drop size were spatially dependent of Air-stream velocity, fuel injection velocity, and normalized distance from the injector exit length.(x/d, y/d) There are also difference characteristics between cavitation, hydraulic flip and the normal flow.

  • PDF

Changes in the Ångstrom Exponent during Aerosol Coagulation and Condensation

  • Jung, Chang H.;Lee, Ji Yi;Kim, Yong P.
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.4
    • /
    • pp.304-313
    • /
    • 2012
  • In this study, the ${\AA}$ngstrom exponent for polydispersed aerosol during dynamic processes was investigated. Log-normal aerosol size distribution was assumed, and a sensitivity analysis of the ${\AA}$ngstrom exponent with regards the coagulation and condensation process was performed. The ${\AA}$ngstrom exponent is expected to decrease because of the particle growth due to coagulation and condensation. However, it is difficult to quantify the degree of change. In order to understand quantitatively the change in the ${\AA}$ngstrom exponent during coagulation and condensation, different real and imaginary parts of the refractive index were considered. The results show that the ${\AA}$ngstrom exponent is sensitive to changes in size distribution and refractive index. The total number concentration decreases and the geometric mean diameter of aerosols increase during coagulation. On the while, the geometric standard deviation approaches monodispersed size distribution during the condensation process, and this change in size distribution affects the ${\AA}$ngstrom exponent. The degree of change in the ${\AA}$ngstrom exponent depends on the refractive index and initial size distribution, and the size parameter changes with the ${\AA}$ngstrom exponent for a given refractive index or chemical composition; this indicates that the size distribution plays an important role in determining the ${\AA}$ngstrom exponent as well as the chemical composition. Subsequently, this study shows how the ${\AA}$ngstrom exponent changes quantitatively during the aerosol dynamics processes for a log-normal aerosol size distribution for different refractive indices; the results showed good agreement with the results for simple analytic size distribution solutions.

Spray Behaviors and Characteristics of Droplet Distribution in GDI injector (GDI 엔진 인젝터의 연료 분무 거동 및 액적 분포 특성)

  • Kim, M.K.;Lee, C.S.;Lee, K.H.;Jin, D.
    • Journal of ILASS-Korea
    • /
    • v.6 no.2
    • /
    • pp.16-21
    • /
    • 2001
  • This paper describes the macroscopic behavior and atomization characteristics of the high-pressure gasoline swirl injector in direct-injection gasoline engine. The global spray behavior of fuel injector was visualized by shadowgraph technique. The atomization characteristics of gasoline spray such as mean diameter and mean velocity of droplets were measured by the phase Doppler particle analyzer system. The macroscopic visualization and experiment of particle measurement on the fuel spray were investigated at 7 and 10 MPa of injection pressure under different spray cone angle. The results of this work show that the geometry of injector was more dominant over the macroscopic characteristics of spray than the fuel injection pressure and injection duration. As for the atomization characteristics, the increase of injection pressure resulted in the decrease of fuel droplet diameter and the atomization characteristics differed as to the spray cone angle. The most droplets had under $25{\mu}m$ diameter and for the large droplets(upper $40{\mu}m$) as the spray grew the atomization presses were very slow. Comparison results between the measured droplet distribution and the droplet distribution functions revealed that the measured droplet distribution is very closed to the Normal distribution function and Nukiyama-Tanasawa's function.

  • PDF

Seasonal variation of concentration and size distribution of Ionic species on aerosol in urban air (도시대기 입자상물질중 수용성 성분의 농도와 입경분로의 계절적 변동)

  • 이승일;황경철;조기철;신영조;김희강
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.64-71
    • /
    • 1996
  • Measurement of concentration and size distribution of TSP, ammonium, nitrate and sulfate were made from Mar., 1991. to June., 1992 in Seoul. The seasonal variation of concentration and size distribution of aerosols has been investiated. Aerosol were collected and size frationated by Andersen air sampler. Size classified samples were extrated with deionized water and analyzed for ammonium, nitrate and sulfate by ion chromatography. As the results of measurement, the average of concentration and MMAD(mass median aerodynamic diameter) were $118.58 \mu g/m^3$, and $2.77 \mu m$ for TSP, $1.92 \mu g/m^3$ and $1.35 \mu m$ for ammonium, $1.34 \mu g/m^3$ and $1.58 \mu m$ for nitrate, $8.52 \mu g/m^3$ and $2.15 \mu m$ for sulfate. The Seasonal variation of concentration and size distribution was observed for ammonium, nitrate and sulfate. The concentration peak of TSP was observed in coarse particles in spring and observed in fine particles in winter. The concentration's distribution of TSP, ammonium, nitrate and sulfate was observed bimodal type during all season.

  • PDF