Browse > Article
http://dx.doi.org/10.5012/jkcs.2007.51.5.407

Theoretical Study on the Effects of Particle Size Distribution on the Optical Properties of Colloidal Gold  

Kim, Hyo-Jeong (Department of Nanomaterials Engineering, Pusan National, University)
Saha Leton Chandra (Department of Nanomaterials Engineering, Pusan National, University)
Jang, Joon-Kyung (Department of Nanomaterials Engineering, Pusan National, University)
Publication Information
Abstract
Mie theory has been used to calculate the extinction of a gold nanoparticle in water by varying its diameter from 1 to 1000 nm. Utilizing this size-dependent theoretical spectrum, we have calculated the extinction spectrum of a colloidal gold by taking into account the size distribution of particle. Such calculation is in better agreement with experiment than the calculation without considering the size distribution. A least-squares fitting is used to deduce the size distribution from an experimental extinction spectrum. For particles with their diameters ranging from 10 to 28 nanometers, the fitting gives reasonable agreement with the size distribution obtained from tunneling electron microscope images.
Keywords
Surface Plasmon Resonance; Gold Nanoparticle; Extinction Spectrum; Size Distribution; Mie Theory;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668   DOI   ScienceOn
2 Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 4212
3 Jang, S.; Park, J.; Shin, S.; Yoon, C.; Choi, B. K.; Gong, M.; Joo, S. W. Langmiur, 2004, 20, 1922   DOI   ScienceOn
4 Berne, B. J.; Pecora, R. Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics, Dover, NY, 2000
5 Nakamura, K.; Kawabata, T.; Mori, Y. Powder Technology, 2003, 131, 120   DOI   ScienceOn
6 Morris, R. H.; Collins, L. F. J. Chem. Phys. 1964, 41, 3357   DOI
7 Bohren, C. F.; Huffman, D. F. Absorption and Scattering of Light by Small Particles; Wiley: New York, 1983
8 Abramowitz, M.; Stegun, I. A. Handbook of Mathematical Functions; Dover: New York, 1970
9 Hale, G. M.; Querry, M. R. Appl. Opt. 1973, 12, 555   DOI
10 Johnson, P. B.; Christy, R. W. Phys. Rev. B 1972, 12, 4370
11 Palik, E. D. Handbook of Optical Constants of Solids; Academic: New York, 1985
12 Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical Recipes in Fortran; Cambridge University Press: Cambridge, 1986
13 Tikhonov, A. N.; Arsenin, V. Y. Solutions of Ill-Posed Problems; Winston & Sons, Washington, D. C., 1977