
ABSTRACT

In this study, the Ångstrom exponent for polydispers-
ed aerosol during dynamic processes was investigat-
ed. Log-normal aerosol size distribution was assum-
ed, and a sensitivity analysis of the Ångstrom expon-
ent with regards the coagulation and condensation
process was performed. The Ångstrom exponent is
expected to decrease because of the particle growth
due to coagulation and condensation. However, it is
difficult to quantify the degree of change. In order
to understand quantitatively the change in the Ång-
strom exponent during coagulation and condensa-
tion, different real and imaginary parts of the refrac-
tive index were considered. The results show that the
Ångstrom exponent is sensitive to changes in size
distribution and refractive index. The total number
concentration decreases and the geometric mean dia-
meter of aerosols increase during coagulation. On the
while, the geometric standard deviation approaches
monodispersed size distribution during the condensa-
tion process, and this change in size distribution aff-
ects the Ångstrom exponent. The degree of change
in the Ångstrom exponent depends on the refractive
index and initial size distribution, and the size para-
meter changes with the Ångstrom exponent for a
given refractive index or chemical composition; this
indicates that the size distribution plays an important
role in determining the Ångstrom exponent as well
as the chemical composition. Subsequently, this
study shows how the Ångstrom exponent changes
quantitatively during the aerosol dynamics processes
for a log-normal aerosol size distribution for different
refractive indices; the results showed good agree-
ment with the results for simple analytic size distri-
bution solutions.
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1. INTRODUCTION

The Ångstrom exponent expresses the spectral de-
pendence of aerosol optical thickness (τ) on the wave-
length of incident light (λ). The Ångstrom exponent
provides information on the particle size (the larger
the exponent, the smaller is the particle size), aerosol
phase function, and the relative magnitude of aerosol
radiances at different wavelengths. It can be used for
computing aerosol optical depth at different waveleng-
ths and characterizing the aerosol types as well as in
radiative transfer modeling and Earth Radiation Bud-
get Study. The Ångstrom exponent is often used as a
qualitative indicator of aerosol particle size. It contains
information on intensive aerosol properties such as
size distribution and refractive index. Different size
distributions such as power law, gamma, and log-nor-
mal distributions have been used to model atmospheric
aerosols (Schuster et al., 2006).

Because of the great variability in the physical, che-
mical, and optical properties of aerosols, it is difficult
to develop a simple and generalized atmospheric aero-
sol model. In particular, it is important to simulate the
aerosol optical properties for estimating radiative forc-
ing taking into account the aerosol optical depth, single
scattering albedo, asymmetry parameter, and the Ång-
strom exponent. In simulating the Ångstrom exponent,
it is necessary to have size and chemical composition
data (O’Neill et al., 2001a, b).

Atmospheric formation and removal of particles are
governed by a number of complex dynamic processes
including nucleation, condensation, coagulation, che-
mical transformation among the gas/particle phases,
and deposition.

The size and composition of atmospheric aerosols
change continuously during the dynamic processes
such as coagulation or condensation. For example,
aerosol particles collide because of their random mo-
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tions and coalesce to form larger chains of flocculation
made up of many particles. The Brownian motion of
particles, turbulence, presence of a shear field, and
external forces such as gravity and electrical forces
could cause coagulation. Condensation is the process
by which an aerosol particle grows with the accretion
of monomers or individual molecules to an already
existent particle. This means that the change in the size
distribution due to coagulation and condensation pro-
cess affect the Ångstrom exponent and the exponent
may change as a function of time owing to the aerosol
dynamic processes. Hence, aerosol dynamics plays an
important role in the estimation of optical properties
such as the Ångstrom exponent. Although the Ång-
strom exponent is expected to decrease during coagu-
lation and condensation because of aerosol growth, it
is difficult to quantify the degree of change.

In this study, the Ångstrom exponent for polydis-
persed aerosol during dynamic processes was simulat-
ed. Log-normal aerosol size distribution was assumed,
and the moment method was used. Analytic solutions
for coagulation and condensation were used, and their
results were compared with those of the numerical
solution for estimating the Ångstrom exponent. Final-
ly, this study shows the results of the sensitivity analy-
sis for the Ångstrom exponent as a function of size
parameter and refractive index under unimodal aero-
sol size distribution.

2. THE ��ANGSTROM EXPONENT
DURING COAGULATION AND
CONDENSATION PROCESSES

In many cases, the size distribution of ambient poly-
dispersed aerosol can be represented by the log-nor-
mal distribution function (Seinfeld and Pandis, 1998):

Np -ln2 (dp/dg)
n (lndp)==mmmmmmmmmmm exp[-mmmmmmmmmmm ] (1)3 2π lnσg                        2ln2σg

where dp is the diameter of the particle; dg, the geome-
tric mean diameter; σg, the geometric standard devia-
tion; and N, the total number concentration.

The kth moment can be written using the moment
equations for a log-normal distribution as follows
(Binkowski and Shankar, 1995; Lee et al., 1984):

Mk==
∞

0  
dk

p n (dp)ddp==
∞
-∞

dk
p n (lndp)d(lndp),

M 2/3
3  1       M0M6dg==mmmmmmmmmm ,  σg== exp{ mm ln·mmmmmm‚ } (2)

(M 3
0 M6)1/6                                   9         M 2

3

where k is an arbitrary integer. Among the Mks, M0 re-

presents the total number of particles, and π/6 M3 the
total volume of particles.

Under the assumption that aerosol size distribution
remains log-normal, the following relation holds.

k2

Mk==M0dg
k exp·mmm ln2σ‚ (3)

2

Total aerosol optical thickness can be expressed as fol-
lows (Cachorro and Frutos, 1994).

τ (λ)==bext∙z (4)

where bext is the aerosol extinction coefficient, and z
is the height of atmospheric layer.

Under the assumption of the homogeneous atmos-
pheric layer, the Ångstrom exponent (α) can be express-
ed as follows (Jung and Kim, 2010; Seinfeld and Pan-
dis, 1998).

log (bext1/bext2)α==--mmmmmmmmmmmmmm (5)
log (λ1/λ2)

Here, bext is the overall extinction coefficient, and λ
is the wavelength, which can be expressed as follows
(Jung and Kim, 2008; Seinfeld and Pandis, 1998). The
Ångstrom exponent is the slope of the graph showing
the wavelength dependence of the aerosol optical depth
(extinction coefficient) in logarithmic coordinates and
can be efficiently used in describing aerosol size.

d max
p     πdp

2

bext==
0
mmmm Qext (dp, λ, m)n(dp)ddp (6)

4

Here, Qext (dp, λ, m) is the single particle extinction
efficiency for particles of diameter (dp) and for light
with wavelength (λ) and refractive index (m); n (dp) is
the size distribution. In this study, two wavelengths-
450 and 670 nm-were used for calculating the Ång-
strom exponent.

As shown in Eq. (5), the Ångstrom exponent can be
calculated from the extinction coefficient. It can be
expressed in the formula that is usually used to des-
cribe the dependency of the aerosol optical thickness
or aerosol extinction coefficient on wavelength.

Although the Ångstrom exponent can be calculated
from the extinction coefficient, the change in the extinc-
tion coefficient during coagulation and condensation
is insufficient to understand the change in the Ångstrom
exponent.

2. 1 An Analytic Solution for Coagulation and
Condensation in the Continuum Regime

The general governing equation for aerosol coagula-
tion and condensation can be expressed using the
moment formula as follows (Jung and Kim, 2006).
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dMk
mmmmm==Coagk++Conk (7)
dt

Here, Coagk and Conk represent the coagulation and
condensation processes, respectively, and k stands for
the kth moment.

By substituting for k==0, 3, 6 in Eq. (7) and using
these three ordinary differential equations of moment
relation, the change in the total number of particles
(N), the numerical solutions for geometric standard
deviation (σg), and the geometric mean diameter (dg)
can be obtained as a function of time (Jung and Kim,
2006; Jung et al., 2004, 2002). The Runge-Kutta 4th

order method can be applied.
Many efforts have been made to derive an analytic

expression for the time evolution of aerosol size dis-
tribution during coagulation and condensation (Jung
and Kim, 2006; Jung et al., 2001; Lee et al., 1984;
Lee, 1983). Among them, Lee (1983) obtained the
change in particle size distribution due to Brownian
coagulation in the continuum regime analytically un-
der the assumption of log-normal aerosol size distri-
bution.

The obtained analytic solution can be expressed as
follows:

1                exp(9ln2σg0)-2
ln2σg==mm ln [2++mmmmmmmmmmmmmmmmmmmmmm ]9           1++[1++exp(ln2σg0)KN0t]

2                                                           1/3

exp· mm ln2σg0‚{1++[1++exp(ln2σg0)]KN0t}
dg 9            
mmm== mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
dg0 {exp(9ln2σg0)-2}          1/2[2++mmmmmmmmmmmmmmmmmmmmmmmmm ]                  {1++[1++exp(ln2σg0)]KN0t}

N                      1
mm==mmmmmmmmmmmmmmmmmmmmmmmm (8)
N0      1++[1++exp(ln2σg0)]KN0t

where K is the collision coefficient (==2kT/3μ); k, the
Boltzmann constant; T, the absolute temperature; and
μ, the gas viscosity; the subscript 0 stands for the ini-
tial conditions (t==0).

The geometric mean diameter, geometric standard
deviation, and total number of particles can be express-
ed as a function of time according to Lee (1983) under
the assumption of the geometric mean diameter does
not deviate greatly from the initial geometric mean
diameter.

More detailed procedure in obtaining analytic solu-
tion for coagulation (Eq. (8)) can be referred in the pre-
vious studies (Lee et al., 1984; Lee, 1983).

Likewise, for the condensation process, the moment
relations can be usually expressed in terms of the 0th,
1st, and 2nd moments (Park et al., 2001) as follows:

dM0              dM3                                     dM6     C
mmmmm==0,   mmmmm==C(S-1)M1,   mmmmm==mmm(S-1)M4
dt          dt                           dt      3

ρRT ρL2M
C==[mmmmmmmmmmmmmmmmmmmmmmm++mmmmm ] (9)

MDPs{1++(S++1)Ps/(2p)}  RKT 2

where, S is the saturation ratio; R, the gas constant; T,
the absolute temperature; M, the molecular mass of
the condensing vapor; D, the diffusion coefficient; ps,
the saturation vapor pressure; p, the total gas pressure;
L, the latent heat; K, the thermal conductivity; and ρ,
the particle density.

From Eq. (9), the following analytic solution can be
obtained by applying the above moment relation to the
condensational equation (Park et al., 2001).

ln2σ==

1                exp(6ln2σ0)-1
mm ln [1++mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm ]6           {1++(2/3)(6/π)exp(-3ln2σ0)C(S-1)dg0

-2t}2

dg
mmm==
dg0

exp(9ln2σ0/2){1++(2/3)(6/π)2/3exp(-3ln2σ0)C(S-1)dg0
-2t}3/2     

1/3

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
1++{exp(6ln2σ0)-1}                 3/4[mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm ]{1++(2/3)(6/π)2/3exp(-3ln2σ0)C(S-1)dg0

-2t}2   

(10)

Note that the total number concentration does not
change during the condensation process, and the two
size parameters of the log-normal distribution-geo-
metric mean diameter (dg) and geometric standard
deviation (σg)-are allowed to vary with time (Jung et
al., 2002).

Subsequently, from Eqs. (5) and (6), the Ångstrom
exponent can be expressed as follows.

The Ångstrom exponent for the aerosol dynamic
process can be simulated using the Mie theory, by sub-
tituting in Eq. (11) the size distribution parameters from
Eq. (8) for coagulation and from Eq. (10) for condensa-
tion. The detailed description of the analytic solution
during the two processes can be found in literature
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(Jung et al., 2006; Park et al., 2001; Lee et al., 1984;
Lee, 1983).

2. 2 The ��Angstrom Exponent during
Coagulation and Condensation in 
the Continuum Regime

During coagulation and condensation, aerosol con-
tinuously changes their size as a function of time. Ba-
sically, the aerosol extinction coefficient is a function
of the size distribution and compositions, which deter-
mine the refractive index. During coagulation, the par-
ticle number concentration decreases, geometric mean
diameter increases, and overall extinction coefficient
(bext) decreases (Jung and Kim, 2008). A higher extinc-
tion coefficient is observed for wide aerosol distribu-
tions with a large geometric standard deviation than
for narrow aerosol distributions with a small geome-
tric standard deviation. During condensation, the visi-

bility decreases and the overall extinction coefficient
(bext) increases (Jung and Kim, 2008).

Fig. 1 shows the change in the size distribution and
the Ångstrom exponent during the coagulation process.
Both, the analytic and numerical driven solutions are
shown for comparison.

The initial values of the size distribution parameters
are as follows: geometric standard deviation, 1.2; geo-
metric mean diameter, 0.2 μm; and total number con-
centration, 10,000/cm3. KN0t is the coagulation-based
dimensionless time (Lee, 1983).

As Fig. 1 shows, the changes in the Ångstrom ex-
ponent with the size distribution as derived from ana-
lytical and numerical solutions agree very well; note
that the “analytic solution” refers to the coagulation
and condensation dynamic solution from previous sec-
tion. Fig. 1 also shows that the Ångstrom exponent
decreases during the coagulation process. The large
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Fig. 1. The changes in the size distribution and the Ångstrom exponent during the coagulation process (Numerical vs. analytic
solution, x axis: coagulation-based dimensionless time).

(a) Geometric standard deviation (b) Number concentration

(c) Geometric mean diameter (d) Ångstrom exponent



initial geometric standard deviation with wide size dis-
tribution corresponds to a larger Ångstrom exponent
than does the small initial geometric standard deviation.

Fig. 2 shows the change in the Ångstrom exponent
with the geometric mean diameter during the coagula-
tion process. The initial values are as follows: geome-
tric standard deviation, 1.2; total number concentration,
10,000/cm3; and refractive index, 1.53-0.015i.

During coagulation, the total number concentration
decreases, geometric mean diameter converges to a
value around 1.32, and the geometric mean diameter
increases (Lee, 1983).

As Fig. 2 shows, the Ångstrom exponent decreases
rapidly as the initial geometric mean diameter increases.
Fig. 2 also shows that the Ångstrom exponent decreases
to a lower value for a large initial geometric mean dia-
meter than for a small initial geometric mean diameter.
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Fig. 2. The changes in the Ångstrom exponent during the
coagulation process for different initial geometric mean dia-
meters (Numerical vs. analytic solution, x axis: coagulation-
based dimensionless time, y axis: Ångstrom exponent).

(a) Geometric standard deviation (b) Geometric mean diameter

(c) Ångstrom exponent

Fig. 3. The changes in the size distribution and the Ångstrom exponent during the condensation process (Numerical vs. analytic
solution, x axis: coagulation-based dimensionless time).



Fig. 3 shows the change in the size distribution and
the Ångstrom exponent during the condensation pro-
cess. The condensation rate of 1e-15 cm3/cm3/s was
considered for different initial geometric standard de-
viation values. We used KN0t for the condensation pro-
cess as a time variable in order to compare coagulation
results for the same time dimension. The Ångstrom
exponents derived based on the size parameter from
numerical and analytic solutions were compared and
showed good agreement. Throughout the condensation
process, the number concentration did not change;
the geometric mean diameter converged to 1, and the
geometric mean diameter increased. As Fig. 3 shows,
the Ångstrom exponent decreases as the initial geo-
metric standard deviation increases. The Ångstrom

exponent decreases during condensation, and the rate
of decrease in the Ångstrom exponent is larger for
small initial geometric standard deviation values. Fig.
3 also shows that the difference in the Ångstrom ex-
ponent between numerical and analytic solution incr-
ease with time. The discrepancy in size parameter es-
timation between the numerical and analytic results
for the condensation process is larger than that for the
coagulation process; this is due to the difference bet-
ween the Ångstrom exponents for the numerical and
analytic results.

Fig. 4 shows the change in the Ångstrom exponent
during condensation under different condensation con-
ditions. As Fig. 4 shows, the exponent decreases to a
minimum value and then increases as condensation
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(a) Geometric standard deviation (b) Geometric mean diameter

(c) Ångstrom exponent

Fig. 4. The changes in the Ångstrom exponent during condensation under different condensation conditions (Numerical vs. analytic
solution, x axis: coagulation-based dimensionless time).



proceeds. Fig. 4 shows that increasing the condensa-
tion rate accelerates these tendencies because the size
distribution parameters change more rapidly as the con-
densation rate (==C (S-1)) increases.

As Figs. 1-4 show, the change in the Ångstrom ex-
ponent is closely related to the refractive index of par-
ticles as well as size distribution. Fig. 5 shows the sen-
sitivity of the Ångstrom exponent as a function of geo-
metric standard deviation (σg) and geometric mean dia-
meter (dg) for different refractive indices. In Fig. 5, the
Ångstrom exponent has been calculated for the same
size distribution with different refractive indices. The

Ångstrom exponent approaches 0 for large particles
and 1 for small particles with diameters less than 0.01
mm. For nuclei-mode particles with geometric mean
diameters less than 0.1 mm, the Ångstrom exponent
approaches 4 in the case of a real refractive index for
nonabsorbing particles. However, for absorbing parti-
cles with an imaginary refractive index, the Ångstrom
exponent approaches 1 (Jung and Kim, 2013); this
explains the behavior observed at the right bottom
edge of Fig. 5(b). The geometric mean diameter at
which the Ångstrom exponent has a peak value decr-
eases as the initial geometric standard deviation incr-
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(a) m==1.53 (b) m==1.53-0.01i

(c) m==1.53-0.1i (d) m==2.0

Fig. 5. Sensitivity of the Ångstrom exponent as a function of the geometric standard deviation and geometric mean diameter for
different refractive indices (x axis: geometric standard deviation, y axis: geometric mean diameter).



eases and the imaginary part of the refractive index
decreases. The peak value decreases as the imaginary
part of the refractive index increases (Jung and Kim,
2013).

In Fig. 5(a), (b) and (c), the results for refractive
indices 1.53, 1.53-0.01i, and 1.53-0.1i are compared
to determine the effect of absorbing particles (the ima-
ginary part) on the Ångstrom exponent. In Fig. 5(a)
and (d), the results for refractive indices 1.53 and 2
are compared to determine the effects of the real part
of the refractive index. As Fig. 5 shows, the Ångstrom
exponent is sensitive to the refractive index; the figure
shows that for nonabsorbing particles, where only real

part of refractive index considered, the Ångstrom ex-
ponent decreases as the geometric standard deviation
and geometric mean diameter increases. For absorbing
particles (i.e., taking into account the imaginary part),
however, the Ångstrom exponent may increase or de-
crease depending on the initial geometric standard
deviation and geometric mean diameter. Generally,
the Ångstrom exponent has a maximum value for a
geometric mean diameter of ~0.1μm and small geo-
metric standard deviation. As the geometric standard
deviation increases, the geometric mean diameter at
which the Ångstrom exponent becomes maximum
decreases.
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(a) dg0==0.3μm, σg0==1.5 (b) dg0==0.3μm, σg0==2.0

(c) dg0==0.6μm, σg0==1.5 (d) dg0==0.6μm, σg0==2.0

Fig. 6. Sensitivity of the Ångstrom exponent as a function of the real and imaginary parts of the refractive indices for different
size parameters (x axis: the real part of the refractive index, y axis: the imaginary part of the refractive index).



The size distribution and refractive index are very
crucial in estimating the Ångstrom exponent for aero-
sol dynamic processes.

In order to quantify the effect of refractive index,
Fig. 6 also describes the sensitivity of the Ångstrom
exponent under different size distributions and refrac-
tivity conditions. Fig. 6 shows the sensitivity of the
Ångstrom exponent as a function of the real and ima-
ginary part of the refractive indices with different size
parameters.

Initial geometric mean diameters of 0.3μm and 0.6
μm with geometric standard deviations of 1.5 and 2.0
were considered. As Fig. 6 shows, the Ångstrom expo-
nent decreases as the geometric standard deviation in-
creases and as the geometric mean diameter increases.
Fig. 6 also shows that there exist several pairs of real
and imaginary refractive index corresponding to a
given Ångstrom exponent. For example, for a geome-
tric mean diameter of 0.3μm and geometric standard
deviation of 1.5, the refractive indices 1.1-0.1i and
1.57 have the same Ångstrom exponent of 1.0. This
means that the Ångstrom exponent and refractive index
do not have a one-to-one relation, which makes it dif-
ficult to retrieve particle size distribution or particle
characteristics from only the measurement of optical
properties.

The Ångstrom exponent is a function of aerosol size
distribution and aerosol refractive index. The refractive
index is related to the chemical composition of the
aerosol, and the real and imaginary parts of the refrac-
tive index represent the scattering and absorption of
aerosol, respectively. During the coagulation and con-
densation processes, aerosol size distribution changes
continuously as a function of time, and this change
affects the change in the Ångstrom exponent.

For example, the total number concentration decre-
ases and the geometric mean diameter converges to a
value of around 1.32 during coagulation. One the while,
the geometric standard deviation approaches 1, indi-
cating that the particle size distribution converges to a
monodisperse distribution during the condensation
process.

The degree of change in the Ångstrom exponent is
closely related to the refractive index and initial aero-
sol size distribution, and it is difficult to pinpoint the
parameter to which the Ångstrom exponent is more
sensitive. However, Figs. 5 and 6 show the degree of
change in the Ångstrom exponent as a function of the
size parameters such as the geometric mean diameter
and geometric standard deviation, and show that the
change is more sensitive to the above mentioned size
parameters than to refractive index under the simula-
tion conditions.

3. CONCLUSIONS

This study shows the Ångstrom exponent for poly-
dispersed aerosol size distribution during the coagula-
tion and condensation processes. Log-normal aerosol
size distribution was assumed; moment relations were
used; and a sensitive analysis of the Ångstrom expon-
ent during the aerosol dynamic process was conducted.

The change in the Ångstrom exponent for different
real and imaginary parts of the refractive index was
also studied.

The analytic solutions for coagulation and condensa-
tion are used, and their results are compared with those
corresponding to the numerical solutions. The results
show that the Ångstrom exponent derived from the
two solutions agree well.

The Ångstrom exponent changes sensitively as a
function of size distribution and refractive index.

During the coagulation process, the geometric mean
diameter increases, the number concentration decrea-
ses, and the geometric standard deviation converges to
1.32 (Lee, 1983). During the condensation process, the
geometric mean diameter increases, and the geometric
standard deviation converges to 1. These changes in
size distribution during the aerosol dynamic process
affect the Ångstrom exponent.

The results also show how the Ångstrom exponent
changes for different refractive indices during the aero-
sol dynamics processes, and the results were compared
with those obtained based on simple analytic size dis-
tribution solutions. Usually, the Ångstrom exponent
decreases during aerosol dynamic processes because
of the growth in particle diameter. However, the degrees
of change depend on the size distribution and refrac-
tive index. Subsequently, this study shows that the size
parameter and refractive index can be important fac-
tors in determining aerosol optical properties. This
study considers unimodal size distribution; however,
the real atmosphere is known to have multimodal size
distribution. It is important to compare the simulation
results with measurement data, which can be a subject
for future study.
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