• Title/Summary/Keyword: diagonal compression

Search Result 85, Processing Time 0.028 seconds

Enhancement of Compressive and Shear Strength for Concrete Masonry Prisms with Steel Fiber-Reinforced Mortar Overlay (강섬유보강 모르타르 바름에 의한 콘크리트 조적 프리즘의 압축 및 사인장 강도 증진 효과)

  • Yu, Ji-Hoon;Myeong, Seong-Jin;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.21-32
    • /
    • 2021
  • Concrete masonry prisms are strengthened with steel fiber-reinforced mortar (SFRM) overlay and tested for compressive and diagonal tension strength. Masonry prisms are produced in poor condition considering standard workmanship for masonry buildings in Korea. Amorphous steel fibers are adopted for SFRM, and appropriate mixing ratios of SFRM are derived considering constructability and strength. Masonry prisms are strengthened with different fiber volume ratios, while numerous strengthened faces and additional reinforcing meshes are produced for compression and diagonal tension tests. Compression and diagonal tension strength are increased by up to 122% and 856%, respectively, and the enhancement effect for diagonal tension strength was superior compared to compression strength. Finally, the test results and strength prediction equations based on existing literature and regression analysis are compared.

합성 전단벽에 대한 대각 압축 응력장 접근법

  • Lee, Eo-Jin;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.5-6
    • /
    • 2010
  • In this study, assuming that there is a diagonal uniaxial compression field in combination with triangular homogeneous stress fields in the cracked concrete wall and a tensile stress of a steel plate occurs in the perpendicular to the direction of the diagonal compression field, an ultimate shear strength of a slender composite shear wall is estimated.

  • PDF

Experimental Study on the Material Properties of Unreinforced Masonry (비보강 조적조의 재료특성 평가에 관한 실험연구)

  • 박진호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.178-185
    • /
    • 2000
  • A set of tests were accomplished in order to get better insight of the basic material properties of masonry made of normal concrete brick and different type of mortar compositions. Three different types of test were performed. Masonry unit and prism were tested by compressive strength test, Masonry wallets were tested by compressive strength test. Masonry wallets were tested in diagonally under tension. A significant influence of different mortar compositions on compression strength of masonry prism was observed, The tests have shown that for diagonal compression three different mode of failure were possible : tension crack along the loaded diagonal sliding along a mortar joint and combined sliding and diagonal crack according to the adhesive strength of a mortar.

  • PDF

Shear Strength of Concrete Members without Transverse Steel (횡보강근이 없는 콘크리트 부재의 전단강도)

  • 김장훈
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.57-66
    • /
    • 2000
  • The truss analogy for the analysis of beam-columns subjected of shear and flexure is limited by the contribution of transverse and longitudinal steel and diagonal concrete compression struts. However, it should be noted that even though the behavior of reinforced concrete beam-columns after cracking can be modeled with the truss analogy, they are not perfect trusses but still structural elements with a measure of continuity provided by a diagonal tension field. The mere notion of compression field denotes that there should be some tension field coexisting perpendicularly to it. The compression field is assumed to form parallel to the crack plane that forms under combined flexure and shear. Therefore, the concrete tension field may be defined as a mechanism existing across the crack and resisting crack opening. In this paper, the effect of concrete tensile properties on the shear strength and stiffness of reinforced concrete beam-columns is discussed using the Gauss two-point truss model. The theoretical predictions are validated against the experimental observations. Although the agreement is not perfect, the comparison shows the correct trend in degradation as the inelasticity increases.

Diagonal Tension Failure Model for RC Slender Beams without Shear Reinforcement Based on Kinematical Conditions (I) - Development

  • You, Young-Min;Kang, Won-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.7-15
    • /
    • 2007
  • A mechanical model was developed to predict the behavior of point-loaded RC slender beams (a/d > 2.5) without stirrups. It is commonly accepted by most researchers that a diagonal tension crack plays a predominant role in the failure mode of these beams, but the failure mechanism of these members is still debatable. In this paper, it was assumed that diagonal tension failure was triggered by the concrete cover splitting due to the dowel action at the initial location of diagonal tension cracks, which propagate from flexural cracks. When concrete cover splitting occurred, the shape of a diagonal tension crack was simultaneously developed, which can be determined from the principal tensile stress trajectory. This fictitious crack rotates onto the crack tip with load increase. During the rotation, all forces acting on the crack (i.e, dowel force of longitudinal bars, vertical component of concrete tensile force, shear force by aggregate interlock, shear force in compression zone) were calculated by considering the kinematical conditions such as crack width or sliding. These forces except for the shear force in the compression zone were uncoupled with respect to crack width and sliding by the proposed constitutive relations for friction along the crack. Uncoupling the shear forces along the crack was aimed at distinguishing each force from the total shear force and clarifying the failure mechanism of RC slender beams without stirrups. In addition, a proposed method deriving the dowel force of longitudinal bars made it possible to predict the secondary shear failure. The proposed model can be used to predict not only the entire behavior of point-loaded RC slender shear beams, but also the ultimate shear strength. The experiments used to validate the proposed model are reported in a companion paper.

Shear behavior of the hollow-core partially-encased composite beams

  • Ye, Yanxia;Yao, Yifan;Zhang, Wei;Gao, Yue
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.883-898
    • /
    • 2022
  • A hollow-core partially-encased composite beam, named HPEC beam, is investigated in this paper. HPEC beam comprises I-beam, longitudinal reinforcement, stirrup, foam formwork, and cementitious grout. The foam formwork is located on both sides of the web, and cementitious grout is cast within the steel flange. To investigate the shear performance of HPEC beams, static loading tests of six HPEC beams and three control beams were conducted. The shear span ratio and the number of studs on the shear behavior of the HPECspecimens were studied. The failure mechanism was studied by analyzing the curves of shear force versus both deflection and strain. Based on the shear span ratio (𝜆), two typical shear failure modes were observed: shear compression failure when 1.6 ≤ 𝜆 ≤ 2; and diagonal compression failure when 𝜆 ≤ 1.15. Shear studs welded on the flange can significantly increase the shear capacity and integrity of HPEC beams. Flange welded shear studs are suggested. Based on the deformation coordination theory and superposition method, combined with the simplified modified compression field model and the Truss-arch model, Modified Deformation Coordination Truss-arch (M.D.C.T.) model was proposed. Compared with the shear capacity from YB9038-2006 and JGJ138-2016, the calculation results from M.D.C.T. model could provide reasonable predictions.

A Method for Mapping Semi-Diagonal of Intra Prediction to Edge Information of MPEG-7 EHD (인트라 예측의 Semi-Diagonal을 EHD 에지 정보로 맵핑하는 방법)

  • Kwon, Yong-Kwang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.87-88
    • /
    • 2012
  • Because intra prediction modes in H.264 are determined by the brightness continuity between neighboring blocks, they can be used as a method for extracting edge information in the compression domain. However, if we just consider 9 intra prediction modes in H.264 as 9 different edge directions, we have the following two problems. First, intra prediction modes tend to yield too many edge blocks, generating unnecessary edge information. Second, we may not need all 9 directional edges (including the DC type) in H.264 intra prediction modes. For example, the EHD (edge histogram descriptor) in MPEG-7 defines only 4 directional edge types, namely horizontal, vertical, diagonal (HVD) edges with $0^{\circ}$, $90^{\circ}$, $45^{\circ}$, and $135^{\circ}$. Here, semi-diagonal (SD) edge types with $112.5^{\circ}$, $157.5^{\circ}$, $22.5^{\circ}$, and $67.5^{\circ}$ in the intra prediction modes in H.264 are not used. In this paper. we prepose a method that removes unnecessary edges from the intra prediction modes by utilizing the total average coefficient of 4x4 blocks in each slice and assign SD edges to HVD (horizontal, vertical, diagonal, $0^{\circ}$, $90^{\circ}$, $45^{\circ}$, $135^{\circ}$) edges by the contextual information of the neighboring blocks. Experimental results show that the edges determined by the proposed method in the compression domain are comparable to those of the previous edge detection methods in the spatial domain.

  • PDF

Analysis of the in-plane shear behaviour of FRP reinforced hollow brick masonry walls

  • Gabor, A.;Ferrier, E.;Jacquelin, E.;Hamelin, P.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.3
    • /
    • pp.237-260
    • /
    • 2005
  • This paper presents an experimental as well as a numerical analysis of the in-plane shear behaviour of hollow, $870{\times}840{\times}100mm$ masonry walls, externally strengthened with FRP composites. The experimental approach is devoted to the evaluation of the effectiveness of different composite strengthening configurations and the methodology consists in the diagonal compression of masonry walls. The numerical study assesses the stress and strain state distribution in the unreinforced and strengthened panels using a commercial finite element code. The effect of FRP reinforcement on the masonry behaviour and the capability of modelling to forecast a representative failure mode of the unreinforced and reinforced masonry walls is investigated.

Failure Surface of Rectangular Columns Subject to Biaxial Bending (2축 휨을 받는 구형기둥의 축력-모멘트 상관곡선)

  • 김진근;양주경
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.113-118
    • /
    • 1993
  • A method for approximating the failure surfaces for columns in compression and biaxial bending was proposed by using the moments along the line of a diagonal of the section. This method showed the better approximations for the failure surfaces of columns than the method of ACI. To calculate the moments along the line of a diagonal of the section, an approximate method which is not influenced by the number of steel s and the location of inner steels was proposed This method gave satisfactory approximations for practical sections of columns.

  • PDF

Experiments and numerical analyses for composite RC-EPS slabs

  • Skarzynski, L.;Marzec, I.;Tejchman, J.
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.689-704
    • /
    • 2017
  • The paper presents experimental and numerical investigations of prefabricated composite structural building reinforced concrete slabs with the insulating material for a residential building construction. The building slabs were composed of concrete and expanded polystyrene. In experiments, the slabs in the full-scale 1:1 were subjected to vertical concentrated loads and failed along a diagonal shear crack. The experiments were numerically evaluated using the finite element method based on two different constitutive continuum models for concrete. First, an elasto-plastic model with the Drucker-Prager criterion defined in compression and with the Rankine criterion defined in tension was used. Second, a coupled elasto-plastic-damage formulation based on the strain equivalence hypothesis was used. In order to describe strain localization in concrete, both models were enhanced in the softening regime by a characteristic length of micro-structure by means of a non-local theory. Attention was paid to the formation of critical diagonal shear crack which was a failure precursor.