• Title/Summary/Keyword: diagnostic radiation generator

Search Result 35, Processing Time 0.017 seconds

Experimental study on build up characteristic of glass dosimeter of preheat and Non-preheat in low energy according to delay time (저에너지X선 영역에서 유리선량계의 preheat과 Non-preheat과의 시간에 따른 build up 특성에 관한 연구)

  • Son, Jin-Hyun;Min, Jung-Whan;Kim, Ki-Won;Son, Soon-Yong;Lim, Hyun-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3412-3418
    • /
    • 2013
  • The Purpose of this study was to evaluate by comparing the dose change and build up characteristic according to delay time in 30 days of glass dosimeter processed preheat and non preheat when measuring accumulation dose of radiation by using glass dosimeter over the long haul. For obtaining low dose with 0.1 mGy, 1 mGy and 5 mGy, we employed diagnostic generator AccuRay-650R. We compared the build up characteristic over the long haul by exposuring radiation to 30 glass dosimeters sorted into 10 glass dosimeters per tube voltage and current. In Non preheat glass dosimeter, initial measured dose was inferior to exposed dose but as time goes on, was close to exposed dose steadily. In 72 hour after experiment end, non preheat glass dosimeters were not indicated the difference from preheat glass dosimeters and statistical analysis were meaningful (p>0.05). Initial measured dose for low glass dosimeter processed preheat was close to exposed dose and stable. After 15 days dose was gradually increased. Previous study characteristics of glass dosimeter were with respect to characteristic of glass dosimeter in high dose of high energy area. However, in this study, we make a judgment to measure the dose of glass dosimeter without preheat processing when measuring the accumulation dose of low dose in conclusion.

Effects of Contrast Improvement on High Voltage Rectification Type of X-ray Diagnostic Apparatus (X선 진단장치의 고압정류방식이 대조도 향상에 미치는 영향)

  • Lee, Hoo-Min;Yoon, Joon;Kim, Hyun-Ju
    • Journal of radiological science and technology
    • /
    • v.37 no.3
    • /
    • pp.187-193
    • /
    • 2014
  • The purpose of this study was to analyze the effect on the selectivity on of high-voltage rectification device that measured the performance of the grid, and the contrast improvement ability (K factor) by measuring the scattered radiation content of the transmitted X-rays. The scattered radiation generated when the X-ray flux comes from the diagnostic X-ray generator that passes through an object. Targeting four different rectifications of X-ray generators, the mean value of the tube voltage and the tube current was measured in order to maximize the accuracy of the generating power dose within the same exposure condition. Using fluorescence meter, the content of the scattered rays that are transmitted through the acrylic was measured depending on the grid usage. When grid is not used, the content of the scattered rays was the lowest (34.158%) with the single-phase rectifier, was increased with the inverter rectifier (37.043%) and the three-phase 24-peak rectification method (37.447%). The difference of the scattered radiation content of each device was significant from the lowest 0.404% to the highest 3.289% while using 8:1 grid, the content of the scattered ray was the lowest with the single content of the scattered ray was the lowest with the single-phase rectifier (18.258%), was increased with the rectifier (25.502%) and the 24-peaks rectification (24.217%). Furthermore, there was difference up to content 7.244% to the lowest content 1.285% within three-phase 24-peaks rectification, inverter rectifications, and single-phase rectifier depending on the selectivity of the grid. Drawn from the statistical analysis, there was a similar relationship between the contrast improvement factor and the K factor. As a result, the grid selectivity and the contrast were increased within the single-phase rectifier rather than the constant voltage rectifier.

Evaluation of Effective and Organ Dose Using PCXMC Program in DUKE Phantom and Added Filter for Computed Radiography System (CR 환경에서의 흉부촬영 시 Duke Phantom과 부가여과를 이용한 유효선량 및 장기선량 평가)

  • Kang, Byung-Sam;Park, Min-Joo;Kim, Seung-Chul
    • Journal of radiological science and technology
    • /
    • v.37 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • By using a Chest Phantom(DUKE Phantom) focusing on dose reduction of diagnostic radiation field with the most use of artificial radiation, and attempt to reduce radiation dose studies technical radiation. Publisher of the main user of the X-ray Radiological technologists, Examine the effect of reducing the radiation dose to apply additional filtering of the X-ray generator. In order to understand the organ dose and effective dose by using the PC-Based Monte Carlo Program(PCXMC) Program, the patient receives, was carried out this research. In this experiment, by applying a complex filter using a copper and Al(aluminum,13) and filtered single of using only aluminum with the condition set, and measures the number of the disk of copper indicated by DUKE Phantom. The combination of the composite filtration and filtration of a single number of the disk of the copper is the same, with the PCXMC 2.0. Program looking combination of additional filtration fewest absorbed dose was calculated effective dose and organ dose. Although depends on the use mAs, The 80 kVp AP projection conditions, it is possible to reduce the effective amount of about 84 % from about 30 % to a maximum at least. The 120 kVp PA projection conditions, it is possible to reduce the effective amount of about 71 % from about 41 % to a maximum of at least. The organ dose, dose reduction rate was different in each organ, but it showed a decrease of dose rate of 30 % to up 100 % at least. Additional filtration was used on the imaging conditions throughout the study. There was no change in terms of video quality at low doses. It was found that using the DUKE Phantom and PCXMC 2.0 Program were suitable to calculate the effect of reducing the effective dose and organ dose.

Comparison of Dose and Quality of Copper and Nickel Additional Filter Plate in Diagnostic X-ray Generator (진단용 엑스선 발생장치에서 부가 여과판에 따른 선량과 화질 비교)

  • Lee, Hyun-Kyung;Go, Yu-Rim;Park, Young-Kyeong;Han, Dong-Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.459-466
    • /
    • 2017
  • The purpose of this study was to evaluate the difference of dose and image quality according to the material of the additional filter plate by selecting copper and nickel. First, the absorbed dose was measured using a Rando phantom setting the additional filter plates of copper and nickel None, 0.1 mm, 0.2 mm, and 0.3 mm under 120 kVp, and 6.3 mAs. Second, We acquired image according to filter thickness of copper and nickel. by changing the tube voltage of 90 kVp, 100 kVp, 110 kVp, 120 kVp and exposure indexes of 400, 800 and 1600. Third, we obtained the SNR and CNR values using the Image J program and evaluated quantitatively and then evaluated image quality. As a result, Absorbed dose measurements showed that nickel was higher than copper, and the absorbed dose decreased as the thickness increased(p<0.05). Furthermore, Quantitative analysis of images showed no significant difference between the two images according to change the voltage and the exposure index(p>0.05). In conclusion, this study confirms that the nickel addition plate can maintain the current image quality while reducing the exposure dose compared to copper.

A Study on the Fabrication of bone Model X-ray Phantom Using CT Data and 3D Printing Technology (CT 데이터와 3D 프린팅 기술을 이용한 뼈 모형 X선 팬텀 제작에 관한 연구)

  • Yun, Myeong Seong;Han, Dong-Kyoon;Kim, Yeon-Min;Yoon, Joon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.879-886
    • /
    • 2018
  • A 3-dimensional (D) printer is a device capable of outputting a three-dimensional solid object based on data modeled in a computer. These features are utilized in the bone model X - ray phantom production etc using CT data by fusing with the radiation science field. A bone model phantom was made using data obtained by CT scan of an existing Pelvis phantom, using PLA, Wood, XT-CF20, Glow fill, Steel filaments which are materials of Fused Filament Fabrication (FFF) 3D printer.Measure Hounsfield Unit (HU) with images obtained by CT scan of the existing Pelvis phantom and five material phantoms made with 3D printer under the same conditions,SI and SNR were measured using a diagnostic X-ray generator, and each phantom was compared and analyzed.As a result, the X - ray phantom in the X - ray examination condition of the limb was found to be most suitable for the glow fill filament.The characteristics of the filament can be known to the base of this research and the practicality of X - ray phantom fabrication was confirmed.