• Title/Summary/Keyword: dextransucrase

Search Result 44, Processing Time 0.022 seconds

Cloning of Dextransucrase Gene from Leuconostoc citreum HJ-P4 and Its High-Level Expression in E. coli by Low Temperature Induction

  • Yi, Ah-Rum;Lee, So-Ra;Jang, Myoung-Uoon;Park, Jung-Mi;Eom, Hyun-Ju;Han, Nam-Soo;Kim, Tae-Jip
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.8
    • /
    • pp.829-835
    • /
    • 2009
  • A dextransucrase (LcDS) gene from Leuconostoc citreum HJ-P4 has been amplified and cloned in E. coli. The LcDS gene consists of 4,431 nucleotides encoding 1,477 amino acid residues sharing 63-98% of amino acid sequence identities with other known dextransucrases from Leuc. mesenteroides. Interestingly, 0.1 mM of IPTG induction at $15^{\circ}C$ remarkably increased the LcDS productivity to 19,187 U/I culture broth, which was over 330-fold higher than that induced at $37^{\circ}C$. Optimal reaction temperature and pH of LcDS were determined as $35^{\circ}C$ and pH 5.5 in 20 mM sodium acetate buffer, respectively. Meanwhile, 0.1 mM $CaCl_2$ increased its activity to the maximum of 686 U/mg, which was 2.1-fold higher than that in the absence of calcium ion. Similar to the native Leuconostoc dextransucrase, recombinant LcDS could successfully produce a series of isomaltooligosaccharides from sucrose and maltose, on the basis of its transglycosylation activity.

Enzymatic Modification of Cellulose Using Leuconostoc mesenteroides B-742CBM Dextransucrase

  • Kim, Do-Man;Kim, Young-Min;Park, Mi-Ran;Ryu, Hwa-Ja;Park, Don-Hee;Robyt, John F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.529-533
    • /
    • 1999
  • In addition to catalyzing the synthesis of dextran from sucrose as a primary reaction, dextransucrase also catalyzes the transfer of glucose from sucrose to other carbohydrates that are present or are added to the reaction digest. We have synthesized new glucans having new structures and new characteristics, by transferring D-glucose of sucrose to $\alpha$-cellulose and by using the constitutive dextransucrase obtained from Leuconostoc mesenteroides B-742CBM. The final reaction products were composed of soluble- and insoluble-glucans. The yields of soluble- and insoluble-glucans were theoretically 21% $\pm$ 2.2 and 68% $\pm$ 5.1, respectively. The remainder of the reaction products was recovered as a mixture of olgiosaccharides that could not be precipitated by 67%(v/v) ethanol. Treating the modified glucans with endo-dextranase and/or cellulase, oligosaccharides were produced that were not formed from the hydrolysis of native cellulose or B-742CBM dextran. The modification of the cellulose was confirmed by methylation and acid hydrolysis of the soluble-and insoluble-glucan. Both (1->4) and(1->6) glycosidic linkages were found in both of the glucans.

  • PDF

Characterization of Low Temperature-adapted Leuconostoc citreum HJ-P4 and Its Dextransucrase for the Use of Kimchi Starter

  • Yim, Chang-Youn;Eom, Hyun-Ju;Jin, Qing;Kim, So-Young;Han, Nam-Soo
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1391-1395
    • /
    • 2008
  • Leuconostoc citreum HJ-P4 is a strain isolated for kimchi fermentation with its low temperature-adapted growth feature and its high dextransucrase activity. The detailed characteristics of cell growth and dextran sucrase activities were investigated at various environmental conditions such as temperatures, pHs, salts, and raw ingredients. This strain showed almost 2-fold higher maximal cell concentration ($X_{max}$) than that of the type culture Leuconostoc mesenteroides B-512F at $10^{\circ}C$. The $X_{max}$ of the strain was maximum at pH 7 and the cell growth was inhibited by salts in a dose-dependent mode up to 7%. Addition of pepper (<6%), garlic (<10%), and ginger (<2%) in kimchi gave no inhibition effect on the growth of HJ-P4. Dextransucrase synthesized by this strain retained over 80% of its maximum activity at $10^{\circ}C$ showing a comparable cold-adapted feature to its host microbe. This culture can be used as a starter culture in the industrial kimchi production giving desirable functions and predominance at low temperature.

Cloning and Sequencing of the ${\alpha}-1{\rightarrow}6$ Dextransurcrase Gene from Leuconostoc mensenteroides B-742CB

  • Kim, Ho-Sang;Kim, Do-Man;Ryu, Hwa-Ja;Robyt, John-F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.559-563
    • /
    • 2000
  • A dextransucrase gene (dsrB742) that expresses a dextransucrase to synthesize mostly ${\alpha}-1{\rightarrow}6$ linked dextran with a low amount (3-5%) of ${\alpha}-1{\rightarrow}3$ branching was cloned and sequenced from Leuconostoc mesenteroides B-742CB. The 6.1-kb PstI fragments were ligated with pGEM-3Zf(-) and transformed into E. coli $DH5{\alpha}$. The recombinant clone (pDSRB742) synthesized dextran on an agar plate containing 2% (w/v) sucrose. The dextran synthesized was hydrolyzed with Penicillium endo-dextranase. The hydrolyzate was composed of glucose, isomaltose, isomaltotriose, and branced pentasaccharide. The nucleotide sequence of dsrB742 showed one open reading frame (ORF) composed of 4,524 bp encoding dextrasnsucrase. The deduced amino acid sequence revealed a calculated molecular mass of 168.6 kDa. It also showed an activity band of 184 kKa on a non-denaturing SDS-PAGE (10%). The amino acid sequence of DSRB742 exhibited a 50% similarity with DSRA from L. mesenteroides B-1299, a 70% similarity with DSRS from L. mesenteroides B-512 (F, FMCM) and a 45-56% similarity with Streptococcal GTFs.

  • PDF

Optimized Substrate Concentrations for Production of Long-Chain Isomaltooligosaccharides Using Dextransucrase of Leuconostoc mesenteroides B-512F

  • Lee, Min-Sung;Cho, Seung-Kee;Eom, Hyun-Ju;Kim, So-Young;Kim, Tae-Jip;Han, Nam-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1141-1145
    • /
    • 2008
  • Isomaltooligosaccharide (IMO) is a promising dietary component with prebiotic effect, and the long-chain IMOs are preferred to short chain ones owing to the longer persistence in the colon. To establish the optimal process for synthesis of long-chain IMOs, we systematically examined the reaction condition of dextransucrase of Leuconostoc mesenteroides B-512F by changing the ratio of sucrose to maltose (varying as 1:4, 1:2, 1:1, and 2:1) and amount of each sugar (from 2% to 20%). As a result, a ratio of 2:1 (sucrose to maltose, 10:5% or 20:10%, w/v) was determined as an optimal condition for long-chain IMO synthesis (DP3-DP9) with relatively higher yields (70-90%, respectively).

Network Structure and Dextran Formation of Jeungpyeon Made with Yeast Starter

  • Hahn, Young-Sook;Lee, Hae-Eun;Park, Ju-Yeon;Woo, Kyung-Ja
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.77-81
    • /
    • 2006
  • The dextransucrase activity of microorganisms which were identified as contributing to the fermentation of jeungpyeon made with yeast was measured. The dextran generated during fermentation was quantified and the viscosity changes were measured. The mechanism of network structure formation was clarified by observing the inside of the network structure over the fermentation periods ranging from 1 to 7 hr using scanning electron microscopy (SEM). The pH of jeungpyeon batter decreased significantly as the fermentation proceeded, whereas the viscosity increased. The identified lactic acid bacteria (LAB) were Leuconostoc mesenteroides subsp. mesenteroides, Pediococcus pentosaceus, Tetragenococcus halophilus, and Leuconostoc mesenteroides subsp. dextranicum. The yeast was identified as Saccharomyces cerevisiae A/Tor. Pretorien. The dextransucrase extracted from those microorganisms showed high activity. On the other hand, the amount of dextran generated from the batter increased significantly beyond 2 hr of fermentation, and the viscosity increment showed a similar trend. The SEM photos showed that the most homogeneous fine network structure was observed in the batter fermented for 2 hr. Therefore, we assumed that the dextran that was generated by microorganisms during fermentation interacted with the components of the batter to increase the stability of the network structure.

Identification of Amino-Acids Residues for Key Role in Dextransucrase Activity of Leuconostoc mesenteroides B-742CB

  • Ryu, Hwa-Ja;Kim, Do-Man;Seo, Eun-Seong;Kang, Hee-Kyung;Lee, Jin-Ha;Yoon, Seung-Heon;Cho, Jae-Young;Robyt, John-F.;Kim, Do-Won;Chang, Suk-Sang;Kim, Seung-Heuk;Kimura, Atsuo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1075-1080
    • /
    • 2004
  • Dextransucrase (DSRB742) from Leuconostoc mesenteroides NRRL B-742CB is a glucosyltransferase that catalyzes the synthesis of dextran using sucrose, or the synthesis of oligosaccharides when acceptor molecules, like maltose, are present. The DSRB742 gene (dsrB742) was cloned and the properties were characterized. In order to identify critical amino acid residues, the DSRB742 amino acid sequence was aligned with glucosyltransferase sequences, and three amino acid residues reported as sucrose binding amino acids in Streptococcus glucosyltransferases were selected for site-directed mutagenesis experiments. Asp-533, Asp-536, and His-643 were independently replaced with Ala or Asn. D533A and D536A dextransucrases showed reduced dextran synthesis activities, 2.3% and 40.8% of DSRB742 dextransucrase, respectively, and D533N, D536N, H643A, end H643N dextransucrases showed complete suppression of dextran synthesis activities altogether. Additionally, D536N dextransucrase showed complete suppression of oligosaccharide synthesis activities. However, modifications at Asp-533 or at His-643 retained acceptor reaction activities in the range of 8.4% to 21.3% of DSRB742 acceptor reaction activity. Thus at least two carboxyl groups of Asp-533 and Asp-536, and His-643 as a proton donor, are essential for the catalysis process.

Monitoring of Leuconostoc Population During Sauerkraut Fermentation by Quantitative Real-Time Polymerase Chain Reaction

  • Kim, So-Young;Yoo, Ki-Seon;Kim, Yu-Jin;Seo, Eun-Young;Kim, Beom-Soo;Han, Nam-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.10
    • /
    • pp.1069-1072
    • /
    • 2011
  • A real-time PCR assay method was established to monitor Leuconostoc spp. populations via specific amplification of the dextransucrase gene. Quantification of L. mesenteroides B-512F using both genomic DNA and cell suspensions yielded a log-linear correlation spanning approximately 5 log units. By using this method, monitoring changes of Leuconostoc spp. during sauerkraut fermentation was successfully accomplished with accuracy after inoculation of starter and sugars (sucrose and maltose).

STUDIES ON THE EXTRACELLULAR POLYSACCHARIDES PRODUCED BY ISOLATED DENTAL PLAQUE STREPTOCOCCI (Dental Plaque Streptococci가 생산하는 세포외 다당류에 관한 연구)

  • Chung, Tai-Young
    • The Journal of the Korean dental association
    • /
    • v.9 no.12
    • /
    • pp.807-811
    • /
    • 1971
  • This report was concerned with the isolation and identification of bacterial flora in the human dental plaque and the dextransucrase activity of isolated species. The results were obtained as follows: 1. The bacterial flora, isolated from the human dental plaque, was identified as 3 species of resembling streptococci, Streptococcus salivarius strain SD-1, Streptococcus bacilli, Lactobacillus brevis strain SD-3, Lactobacillus acidophilus strain SD-2 and SD-7, resembling Staphylococcus sp, and one species of resembling Leuconostoc mesenteroides strain SD-6. 2. The dextransucrase activites of resembling Streptococcus mitis strain SD-9 and Streptococcus salivarius strain SD-1 were exhibited the highest among the isolated species of human dental plaque.

  • PDF