• Title/Summary/Keyword: device physics

Search Result 722, Processing Time 0.029 seconds

Angular Dispersion-type Nonscanning Fabry-Perot Interferometer Applied to Ethanol-water Mixture

  • Ko, Jae-Hyeon;Kojima, Seiji
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.261-266
    • /
    • 2009
  • The angular dispersion-type non-scanning Fabry-Perot was applied to an ethanol-water mixture in order to investigate its acoustic properties such as the sound velocity and the absorption coefficient. The scattered light from the mixture was analyzed by using the charge-coupled-device area detector, which made the measurement time much shorter than that obtained by using the conventional scanning tandem multi-pass Fabry-Perot interferometer. The sound velocity showed a deviation from ultrasonic sound velocities at low temperatures accompanied by the increase in the absorption coefficient, indicating acoustic dispersion due to the coupling between the acoustic waves and some relaxation process. Based on a simplified viscoelastic theory, the temperature dependence of the relaxation time was obtained. The addition of water molecules to ethanol reduced the relaxation time, consistent with dielectric measurements. The present study showed that the angular dispersion-type Fabry-Perot interferometer combined with an area detector could be a very powerful tool in the real-time monitoring of the acoustic properties of condensed matter.

Efficient Optical Intensity Modulator Based on the Electrically Tunable LiNbO3 Reflection Grating for Analog Fiber-Optic Links

  • Jung I-Young Michelle;Shin Dong-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • We investigate the efficiency of an optical intensity modulator based on an electrically tunable $LiNbO_3$ reflection grating. Assuming a grating coupling coefficient and the waveguide propagation loss, waveguide length is varied to find its effect on the modulator slope efficiency and the device capacitance. With the low propagation loss of the $LiNbO_3$ waveguide, a very efficient optical intensity modulator can be achieved for a low frequency (${\sim}1GHz$) as long as the requirement for the grating coupling coefficient is satisfied.

Detection of Ions in ECR $H_2$ Plasma Using Omegatron Mass Spectrometer (오메가트론을 이용한 ECR 수소 플라프마 내의 이온 검출)

  • Park, Jung-Woo;Jeong, Heui-Seob;Kim, Gon-Ho;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.459-461
    • /
    • 1995
  • An omegatron mass spectrometer was designed and fabricated. Experiments have been performed to demonstrate the instrument's operation in the ECR plasma device. By using this analyzer, mass spectra have been obtained in hydrogen plasmas, and typical results are presented. In the plasma omegatron, downstreaming plasma generated by ECR are entering the analyzer through a smsll floating aperture. We employ a biasing technique to reduce the ion velocity along the magnetic field and to keep the ions from drifting to the side pintos, and thus achieved improved ion collection and sensitivity. Mass spectra obtained show that main positive ion components are $H_3{^+}$ and $H_2{^+}$ with the density ratio of $H_2{^+}$ to $H_3{^+}$ $\simeq$ 0.2.

  • PDF

Cross Sectional Thermal and Electric Potential Imaging of an Operating MOSFET (작동중인 모스 전계 효과 트랜지스터 단면에서의 상대온도 및 전위 분포 측정)

  • Kwon, Oh-Myoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.829-836
    • /
    • 2003
  • Understanding of heat generation in semiconductor devices is important in the thermal management of integrated circuits and in the analysis of the device physics. Scanning thermal microscope was used to measure the temperature and the electric potential distribution on the cross-section of an operating metal-oxide-semiconductor field-effect transistor (MOSFET). The temperature distributions were measured both in DC and AC modes in order to take account of the leakage current. The measurement results showed that as the drain bias was increased the hot spot moved to the drain. The density of the iso-potential lines near the drain increased with the increase in the drain bias.

Development of High-Field ESR System Using SQUID Magnetometer and its Application to Measurement under High Pressure

  • Sakurai, T.;Fujimoto, K.;Okubo, S.;Ohta, H.;Uwatoko, Y.
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.168-172
    • /
    • 2013
  • We have developed a high-field and high-frequency ESR system using a commercially available magnetometer equipped with the superconducting quantum interference device (SQUID). This is magnetization detection type ESR and ESR is observed as a change of the magnetization at the resonance condition under irradiation of the electromagnetic wave. The frequency range is from 70 to 315 GHz and the maximum magnetic field is 5 T. The sensitivity is estimated to be $10^{13}$ spins/G. The advantage of this system is that the high-field ESR measurements can be made very easily and quantitatively. Moreover, this high-field ESR can be applied to the measurements under pressure by using a widely used piston-cylinder pressure cell.

Bistable Liquid Crystal Device Realized on Microscopic Orientational Pattern

  • Kim, Jong-Hyun;Yoneya, Makoto;Yokoyama, Hiroshi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.187-190
    • /
    • 2005
  • Alignment pattern of checkerboard was constructed by the stylus of atomic force microscope. Orientational bistability of the nematic liquid crystal was realized on that frustrated surface alignment. Macroscopic orientational switching between two perpendicular directions took place by an appropriate in-plane electric field. The threshold electric fields decreased in both switching directions as temperature increased. The focused laser heated up only the limited domains in the cell including a light-absorbing medium. Irradiating the laser concurrently with an appropriate electric field, we switched the selected unit domains in the alignment pattern. The switched domains maintained stably the switched direction without the disturbance from the exterior. Extending and repeating this process, we realized extremely fine devices of bistable switching.

  • PDF

Ultrashort Pulse Reflectometry for the Measurement of Electron Density Profiles (전자 밀도 분포 측정을 위한 극단 펄스 레플렉토메터리)

  • 노영수
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.1
    • /
    • pp.8-14
    • /
    • 2004
  • An O-mode Ultrashort Pulse Reflectometry (USPR) system has been designed and developed for the measurement of electron density profiles on the Sustained Spheromak Physics Experiment (SSPX) spheromak. In the original design of SSPX, peak densities were envisioned to be in the range of 0.5-3${\times}$10$^{14}$ cm$^{-3}$ . The total duration of formation and sustained discharges is typically ∼2 msec. Moreover, diagnostic access on SSPX is severely restricted. Such high density and short duration plasmas coupled with stringent diagnostic access are quite challenging for conventional reflectometer systems. In USPR, the SSPX diagnostic requirements have been successfully satisfied by employing up-converting mixers and monostatic horn/waveguide configuration. As a result, the USPR system has proven its applicability for the density measurement of a future fusion device. In the density profile measurements, the USPR system is capable of routinely generating density profiles with a temporal resolution of 57 $\mu$s. This paper presents details regarding the USPR fundamental principles, associated subsystems and laboratory tests as well as the experimental results obtained on SSPX

Electrical and Memory Switching Characteristics of Amorphous Thin-Film $As_{10}Ge_{15}Te_{75}$ Thin-Film (비정질 $As_{10}Ge_{15}Te_{75}$ 박막의 전기적 및 메모리 스위칭 특성)

  • 이병석;이현용;정흥배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.234-237
    • /
    • 1996
  • The amorphous chalogenide semiconductors are new material in semiconductor physics. Their properties, especially electronic and optical properties are main motives for device application. Amorphous As$_{10}$Ge$_{15}$ Te$_{75}$material has the stable ac conductivity at high frequency and the dc memory switching property. At higher frequency than 10MHz, ac conductivity of As$_{10}$Ge$_{15}$ Te$_{75}$ thin film is much higher than below frequency and independent of temperature and frequency. If the dc voltages are applied between edges of thin film, one can see the dc memory switching phenomenon, in other words the dc conductivity increases quite a few of magnitude after the threshold voltage is applied. Using the stable ac conductivity at high frequency and the increase of conductivity after dc memory switching, As$_{10}$Ge$_{15}$ Te$_{75}$thin film is considered as new material for microwave switch devices.vices.es.vices.

  • PDF