• Title/Summary/Keyword: device degradation

Search Result 474, Processing Time 0.025 seconds

Performance of a Refrigerant Heating Type Heat Pump by Changing of Driving Devices and Heat Exchangers (구동장치 및 열교환기 변경에 따른 냉매가열식 열펌프의 성능특성)

  • Park, Youn-Cheol;Kim, Sang-Hyuk;Kim, Ji-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.49-56
    • /
    • 2008
  • When the outdoor air temperature decreased less than the freezing temperature, frost forms at the surface of heat exchangers and it makes the performance degradation of a heat pump system. In this study, a heat pump system has been developed which has a refrigerant heating device as an auxiliarly heating equipment. To reduce power consumptions of the system, a liquid pump, rather than a compressor, was used to drive refrigerant in the heat pump cycle. Ratio of refrigerant mass flow between a refrigerant heating heat exchanger(GHX) and a outdoor plate heat exchanger(PHX) was varied and the system performance was measured and analyzed. As results, when the refrigerant flow rate to the GHX was decreased, the system performance is decreased due to heat absorption capability restriction of the GHX and small variation of the power consumption in the compressor. The effect on the evaporating and condensing pressure by the distribution ratio of the refrigerant to the each heat exchanger is small compare to the effect by the frequency change in the compressor. When the compressor was replaced by the liquid pump, the capacity of the system decreased a little, however the power consumption decrease approximately 80% compare with the power used in the compressor.

Still Image Improvement of Adaptative DWT(Discrete wavelet transform) Decomposition Level Through the Implementation of JPEG2000 Hardware (JPEG2000의 하드웨어 구현을 통한 최적 DWT 레벨의 정지영상 화질개선)

  • Lee, Cheol;Ryu, Jae-Jung;Lee, Jung-Suk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1343-1352
    • /
    • 2018
  • This paper is designed for hardware to be applied to JPEG2000 standard in the fields of digital photography, remote sensing, aerial remote telemetry, medical imaging, high resolution, and high compression telemetry applications. The software implementation of the JPEG2000 standard for image compression has disadvantages that the processing speed is very slow compared to the conventional JPEG, also the degradation occurs when the DWT level of the JPEG2000 standard is improved. In order to solve this problem, we designed and applied JPEG2000 compression/decompressor. In this paper, the hardware of the JPEG 2000 compression/storage device shows optimal compression speed, faster processing speed, and the image quality for still images by changing the optimal DWT level.

Online Snapshot Method based on Directory and File Change Tracking for Virtual File System (가상파일시스템에서 디렉토리 및 파일 변경 추적에 기반한 온라인 스냅샷 방법)

  • Kim, Jinsu;Song, Seokil;Shin, Jae Ryong
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.5
    • /
    • pp.417-425
    • /
    • 2019
  • Storage snapshot technology allows to preserve data at a specific point in time, and recover and access data at a desired point in time. It is an essential technology for storage protection application. Existing snapshot methods have some problems in that they dependent on storage hardware vendor, file system or virtual block device. In this paper, we propose a new snapshot method for solving the problems and creating snapshots on-line. The proposed snapshot method uses a method of extracting the log records of update operations at the virtual file system layer to enable the snapshot method to operate independently on file systems, virtual block devices, and storage hardwares. In addition, the proposed snapshot mehod creates and manages snapshots for directories and files without interruption to the storage service. Finally, through experiments we measure the snapshot creation time and the performance degradation caused by the snapshot.

Analysis of Material Properties According to Compounding Conditions of Polymer Composites to Reduce Thermal Deformation (열변형 저감을 위한 고분자 복합소재 배합 조건에 따른 재료특성 분석)

  • Byun, Sangwon;Kim, Youngshin;Jeon, Euy sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.148-154
    • /
    • 2022
  • As the 4th industrial age approaches, the demand for semiconductors is increasing enough to be used in all electronic devices. At the same time, semiconductor technology is also developing day by day, leading to ultraprecision and low power consumption. Semiconductors that keep getting smaller generate heat because the energy density increases, and the generated heat changes the shape of the semiconductor package, so it is important to manage. The temperature change is not only self-heating of the semiconductor package, but also heat generated by external damage. If the package is deformed, it is necessary to manage it because functional problems and performance degradation such as damage occur. The package burn in test in the post-process of semiconductor production is a process that tests the durability and function of the package in a high-temperature environment, and heat dissipation performance can be evaluated. In this paper, we intend to review a new material formulation that can improve the performance of the adapter, which is one of the parts of the test socket used in the burn-in test. It was confirmed what characteristics the basic base showed when polyamide, a high-molecular material, and alumina, which had high thermal conductivity, were mixed for each magnification. In this study, functional evaluation was also carried out by injecting an adapter, a part of the test socket, at the same time as the specimen was manufactured. Verification of stiffness such as tensile strength and flexural strength by mixing ratio, performance evaluation such as thermal conductivity, and manufacturing of a dummy device also confirmed warpage. As a result, it was confirmed that the thermal stability was excellent. Through this study, it is thought that it can be used as basic data for the development of materials for burn-in sockets in the future.

Effect of Heat and Moisture on the Phase Transition in Dimethylammonium-Facilitated CsPbI3 Perovskite (다이메틸암모늄 유도 CsPbI3 페로브스카이트 상의 상전이 거동에 대한 열과 수분의 영향)

  • Sohyun Kang;Seungmin Lee;Jun Hong Noh
    • Korean Journal of Materials Research
    • /
    • v.33 no.8
    • /
    • pp.344-351
    • /
    • 2023
  • Cesium lead iodide (CsPbI3) with a bandgap of ~1.7 eV is an attractive material for use as a wide-gap perovskite in tandem perovskite solar cells due to its single halide component, which is capable of inhibiting halide segregation. However, phase transition into a photo inactive δ-CsPbI3 at room temperature significantly hinders performance and stability. Thus, maintaining the photo-active phase is a key challenge because it determines the reliability of the tandem device. The dimethylammonium (DMA)-facilitated CsPbI3, widely used to fabricate CsPbI3, exhibits different phase transition behaviors than pure CsPbI3. Here, we experimentally investigated the phase behavior of DMA-facilitated CsPbI3 when exposed to external factors, such as heat and moisture. In DMA-facilitated CsPbI3 films, the phase transition involving degradation was observed to begin at a temperature of 150 ℃ and a relative humidity of 65 %, which is presumed to be related to the sublimation of DMA. Forming a closed system to inhibit the sublimation of DMA significantly improved the phase transition under the same conditions. These results indicate that management of DMA is a crucial factor in maintaining the photo-active phase and implies that when employing DMA designs are necessary to ensure phase stability in DMA-facilitated CsPbI3 devices.

A Comparative Study on the Regulations on Implantable Bioabsorbable Combination Products -Focusing on the U.S., Europe and Korea- (이식형 흡수성 융복합 의료제품 규제 비교 연구 -미국, 유럽, 한국을 중심으로-)

  • Hyeon Jeong Lee;Mi Hye Kim;Ju Eun Seol;Su Dong Kim;Joo Hee Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.414-427
    • /
    • 2023
  • Implantable bioabsorbable combination products undergo inherent degradation and systemic absorption within the physiological environment, thereby streamlining the therapeutic regimen and obviating the imperative for invasive extraction procedures. This inherent property not only enhances patient convenience and therapeutic efficacy but also underpins a paradigm of support characterized by heightened safety parameters. Within the regulatory landscapes of Korea, the United States, and Europe, implantable bioabsorbable combination products are meticulously classified into distinct categories, either as pharmaceutical implants or as implantable medical devices, depending on their primary mode of action. This scholarly investigation systematically examines the regulatory frameworks governing implantable bioabsorbable combination products in South Korea, the United States, and Europe. Notable discrepancies across national jurisdictions emerge concerning regulatory specifics, including terminology, product classification, and product name associated with these products. The conspicuous absence of standardized approval regulations presents a formidable barrier to the commercialization of these advanced medical devices. This academic discourse passionately emphasizes the critical need for formulating and implementing a sophisticated regulatory framework capable of streamlining the product approval process, thereby paving the way for a seamless path to commercializing implantable bioabsorbable combination products.

A Study on Comparison of Outdoor Wind Pressure Performance According to Outdoor Exposure and Acceleration Deterioration Methods of Structural Sealants Applied to Curtain Wall (커튼월에 적용된 구조용 실링재의 옥외폭로와 실내복합열화 처리방법에 따른 내풍압성능 비교연구)

  • Jang, Pil Sung;Hong, Soon Gu;Kim, Sung Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.279-287
    • /
    • 2018
  • Sealants are an important element of modern architecture and serve as a building protection against weathering by providing barriers against ingress of moisture, air, and other materials. Exposure to a variety of environments often reduces lifespan due to changes in physical, chemical and mechanical characteristics, and UV, humidity, and temperature expansion are important issues that are directly related to durability. In this study, a combined deterioration test chamber was developed to simulate the environment of the open air as an instrument for verifying the durability of structural sealing materials indoors. In order to replicate special weather conditions, such as yellow dust, acid rain, and contamination by microorganisms, it was deemed impossible to replicate the outdoor environment by 100 %, and the results of the results of the results of the external exposure test of the structural sealant and the combined deterioration testing device. As a result of the displacement test of the outdoor exposure test, it was determined that the sealant was breaking apart and that it would be smooth, and the displacement would be up to three times greater than the initial material value of 1 year. The displacement test results of the combined deterioration test device show the tendency to deteriorate, decreasing the elasticity and tensile characteristics. In the case of denatured silicon, the current 400 cycles have been completed to confirm 12 months of degradation of the external exposure. The deformation of the test specimen cannot be verified with the naked eye, so it is considered that the conditions of the specimen are more stable than the silicon sealant. As a result of the outdoor exposure test, if the combined deterioration test device is structured and proposed in the relevant guidance or specification, the anticipated lifespan of 12 months in the actual use environment can be verified indoors and below 3 months later, economically.

Calibration Kit for 4-Port Horizontal/Vertical Probing (4-포트 수평/수직 겸용 프로브용 교정키트)

  • Kim, Taeho;Kim, Jonghyeon;Kim, Sungjun;Kim, Kwangho;Pu, Bo;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.559-575
    • /
    • 2014
  • In this paper, we propose a horizontal/vertical calibration kit for calibrating a vector network analyzer(VNA) to measure the vertical connector pin. If the conventional calibration kit is used, we should change the arm for a probe or need an assistant device and it takes a long time. In addition there is a risk of precision degradation caused by the position change of the probe tip sensitive to the surroundings. We suggest a 4-port vertical calibration kit to make up for the aforementioned shortcomings. The calibration kit was manufactured for the SOLT calibration method. 'Short', 'Open', and 'Load' are available in the horizontal plane, 'Thru' is available not only in the horizontal plane on the two planes of a PCB, but in the vertical plane between the two planes according to the positions of the probes. We complemented the conventional calibration kit to make a vertical calibration kit to be used for the vertical measurement method. We compared and analysed their reflection/transfer characteristics of the SOLT calibration standards of the proposed calibration kit and conventional one, we get a ${\pm}0.1$ dB differences of transfer characteristics in the range from 300 kHz to 8.5 GHz. In order to demonstrate usefulness, and we performed a case study for horizontal and vertical cases, and compared the results of the proposed calibration kit and conventional one.

Multiscale Analysis on Expectation of Mechanical Behavior of Polymer Nanocomposites using Nanoparticulate Agglomeration Density Index (나노 입자의 군집밀도를 이용한 고분자 나노복합재의 기계적 거동 예측에 대한 멀티스케일 연구)

  • Baek, Kyungmin;Shin, Hyunseong;Han, Jin-Gyu;Cho, Maenghyo
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.323-330
    • /
    • 2017
  • In this study, multiscale analysis in which the information obtained from molecular dynamics simulation is applied to the continuum mechanics level is conducted to investigate the effects of clustering of silicon carbide nanoparticles reinforced into polypropylene matrix on mechanical behavior of nanocomposites. The elastic behavior of polymer nanocomposites is observed for various states of nanoparticulate agglomeration according to the model reflecting the degradation of interphase properties. In addition, factors which mainly affect the mechanical behavior of the nanocomposites are identified, and new index 'clustering density' is defined. The correlation between the clustering density and the elastic modulus of nanocomposites is understood. As the clustering density increases, the interfacial effect decreased and finally the improvement of mechanical properties is suppressed. By considering the random distribution of the nanoparticles, the range of elastic modulus of nanocomposites for same value of clustering density can be investigated. The correlation can be expressed in the form of exponential function, and the mechanical behavior of the polymer nanocomposites can be effectively predicted by using the nanoparticulate clustering density.

The Effect of Electromagnetic Noise on the Wireless LAN Using Direct Sequence Spread Spectrum (DSSS 방식용 무선 LAN에 대한 전파 잡음의 영향)

  • Kim, Che-Young;Park, Jeung-Keun;Park, Seng-Keun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.6
    • /
    • pp.630-639
    • /
    • 2008
  • In this paper, we investigate the cause of throughput degradation on the wireless local area network(WLAN) and the reason of interference level change attributed to the spanned frequency in the presence of electromagnetic interference. We also measured and quantified the electric field strength of interference which yields the abrupt change of the throughput. Two units of WLAN and one unit of AP(Access Point) are configured to maintain the radio link. As the sources of interference, both the co-channel and adjacent-channel interference are considered and the critical values of electric field are provided for each case. Our experimental observations show that the signal strength generated from these interference sources is at most less than 54 dBuV/m @3 m in order to coexist between WLANs and other low power radio devices without any noticeable throughput decreases. Based on our empirical results, as far as 802.11b WLAN is concerned, we believe that the current domestic limit of the signal strength for an extremely low power radio device, 30.9 dBuV/m @3 m, can be increased as much as 23.1 dB.