• Title/Summary/Keyword: deterministic model

Search Result 584, Processing Time 0.022 seconds

Fuzzy methodology application for modeling uncertainties in chloride ingress models of RC building structure

  • Do, Jeongyun;Song, Hun;So, Seungyoung;Soh, Yangseob
    • Computers and Concrete
    • /
    • v.2 no.4
    • /
    • pp.325-343
    • /
    • 2005
  • Chloride ingress is a common cause of deterioration of reinforced concrete located in coastal zone. Modeling the chloride ingress is an important basis for designing reinforced concrete structures and for assessing the reliability of an existing structure. The modeling is also needed for predicting the deterioration of a reinforced structure. The existing deterministic solution for prediction model of corrosion initiation cannot reflect uncertainties which input variables have. This paper presents an approach to the fuzzy arithmetic based modeling of the chloride-induced corrosion of reinforcement in concrete structures that takes into account the uncertainties in the physical models of chloride penetration into concrete and corrosion of steel reinforcement, as well as the uncertainties in the governing parameters, including concrete diffusivity, concrete cover depth, surface chloride concentration and critical chloride level for corrosion initiation. There are a lot of prediction model for predicting the time of reinforcement corrosion of structures exposed to chloride-induced corrosion environment. In this work, RILEM model formula and Crank's solution of Fick's second law of diffusion is used. The parameters of the models are regarded as fuzzy numbers with proper membership function adapted to statistical data of the governing parameters instead of random variables of probabilistic modeling of Monte Carlo Simulation and the fuzziness of the time to corrosion initiation is determined by the fuzzy arithmetic of interval arithmetic and extension principle. An analysis is implemented by comparing deterministic calculation with fuzzy arithmetic for above two prediction models.

Development of the High Reliable Safety PLC for the Nuclear Power Plants (고신뢰도 안전등급 제어기기 개발)

  • Son, Kwang-Seop;Kim, Dong-Hoon;Son, Choul-Woong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.109-119
    • /
    • 2013
  • This paper presents the design of the Safety Programmable Logic Controller (SPLC) used in the Nuclear Power Plants, an analysis of a reliability for the SPLC using a markov model. The architecture of the SPLC is designed to have the multiple modular redundancy composed of the Dual Modular Redundancy(DMR) and the Triple Modular Redundancy(TMR). The operating system of the SPLC is designed to have the non-preemptive state based scheduler and the supervisory task managing the sequential scheduling, timing of tasks, diagnostic and security. The data communication of the SPLC is designed to have the deterministic state based protocol, and is designed to satisfy the effective transmission capacity of 20Mbps. Using Markov model, the reliability of SPLC is analyzed, and assessed. To have the reasonable reliability such as the mean time to failure (MTTF) more than 10,000 hours, the failure rate of each SPLC module should be less than $2{\times}10^{-5}$/hour. When the fault coverage factor (FCF) is increased by 0.1, the MTTF is improved by about 4 months, thus to enhance the MTTF effectively, it is needed that the diagnostic ability of each SPLC module should be strengthened. Also as the result of comparison the SPLC and the existing safety grade PLCs, the reliability and MTTF of SPLC is up to 1.6-times and up to 22,000 hours better than the existing PLCs.

Comparison of Delay Estimates for Signalized Intersection (신호교차로 지체 산정 비교)

  • Jo, Jun-Han;Jo, Yong-Chan;Kim, Seong-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.1
    • /
    • pp.67-80
    • /
    • 2005
  • In this paper, the primary objective of the research are to review the methods currently avaliable for estimating the delay incurred by vehicles at signalized intersections. The paper compares the delay estimates from a deterministic queueing model, a model based on shock wave theory , the steady-state Webster model, the queue-based models defined in the 1994 and 2001 version of the High way Capacity Manual, in addition to the delays estimated from the TRANSYT-7F macroscopic simulation and NETSIM microscopic simulation. More especially, this paper is to compare the delay estimates obtained using macroscopic and microscopic simulation tools against state-of-the practice analytical models that are derived from deterministic queueing and shock wave analysis theory. The results of the comparisons indicate that all delay models produce relatively similar results for signalized intersections with low traffic demand, but that increasing differences occur as the traffic demand approaches saturation. In particular, when the TRANSYT-7F and NETSIM are compared, it is highly differences as approach for traffic condition to over-saturation. Also, the NETSIM microscopic simulation is the lowest estimates among the various models.

Wedge Failure Probability Analysis for Rock Slope Based on Non-linear Shear Strength of Discontinuity (불연속면의 비선형 전단강도를 이용한 암반사면 쐐기파괴 확률 해석)

  • 윤우현;천병식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.151-160
    • /
    • 2003
  • The stability of the designed rock slope is analysed based on two kinds of shear strength model. Besides the deterministic analysis, a probabilistic approach on Monte Carlo simulation is proposed to deal with the uncertain characteristics of the discontinuity and the results obtained from two models are compared to each other. To carry out the research of characteristics of the discontinuity, BIPS, DOM Scanline survey data and direct shear test data are used, and chi-square test is used for determining the probability distribution function. The rock slope is evaluated to be stable in the deterministic analysis, but in the probabilistic analysis, the probability of failure is more than 5%, so, it is considered that the rock slope is unstable. In the shear strength models, the probability of the failure based on the Mohr-Coulomb model(linear model) is higher than that of the Barton model. It is supported by the fact that the Mohr-Coulomb model is more sensitive to block size than the Barton model. In fact, there is no reliable way to estimate the unit cohesion of the Mohr-Coulomb model except f3r back analysis and in the case of small block failure in the slope, Mohr-Coulomb model may excessively evaluate the factor of the safety. So, the Barton model of which parameters are easily acquired using the geological survey is more reasonable for the stability of the studied slope. Also, the selection of the proper shear strength model is an important factor for slope failure analysis.

STABILITY ANALYSIS OF A HOST-VECTOR TRANSMISSION MODEL FOR PINE WILT DISEASE WITH ASYMPTOMATIC CARRIER TREES

  • Lashari, Abid Ali;Lee, Kwang Sung
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.987-997
    • /
    • 2017
  • A deterministic model for the spread of pine wilt disease with asymptomatic carrier trees in the host pine population is designed and rigorously analyzed. We have taken four different classes for the trees, namely susceptible, exposed, asymptomatic carrier and infected, and two different classes for the vector population, namely susceptible and infected. A complete global analysis of the model is given, which reveals that the global dynamics of the disease is completely determined by the associated basic reproduction number, denoted by $\mathcal{R}_0$. If $\mathcal{R}_0$ is less than one, the disease-free equilibrium is globally asymptotically stable, and in such a case, the endemic equilibrium does not exist. If $\mathcal{R}_0$ is greater than one, the disease persists and the unique endemic equilibrium is globally asymptotically stable.

Content-based Image Retrieval using an Improved Chain Code and Hidden Markov Model (개선된 chain code와 HMM을 이용한 내용기반 영상검색)

  • 조완현;이승희;박순영;박종현
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.375-378
    • /
    • 2000
  • In this paper, we propose a novo] content-based image retrieval system using both Hidden Markov Model(HMM) and an improved chain code. The Gaussian Mixture Model(GMM) is applied to statistically model a color information of the image, and Deterministic Annealing EM(DAEM) algorithm is employed to estimate the parameters of GMM. This result is used to segment the given image. We use an improved chain code, which is invariant to rotation, translation and scale, to extract the feature vectors of the shape for each image in the database. These are stored together in the database with each HMM whose parameters (A, B, $\pi$) are estimated by Baum-Welch algorithm. With respect to feature vector obtained in the same way from the query image, a occurring probability of each image is computed by using the forward algorithm of HMM. We use these probabilities for the image retrieval and present the highest similarity images based on these probabilities.

  • PDF

State-Space Model Identification of Tandem Cold Mill Based on Subspace Method (부분공간법을 이용한 연속 냉간압연기의 상태공간모델 규명)

  • Kim, In-Su;Hwang, Lee-Cheol;Lee, Man-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.290-302
    • /
    • 2000
  • In this paper, we study on the identification of discrete-time state-space model for robust control of tandem cold mill, using a MOESP(MIMO output-error state-space model identification) algorithm based on subspace method. It is shown that the identified model is well adapted to input-output data sets, which are obtained from nonlinear mathematical equations of tandem cold mill. Furthermore, deterministic H$\infty$ norm bounds on uncertainties including modeling errors and disturbances are quantitatively identified in the frequency domain. Finally, the results give a basic idea to determine weighting functions included in formulating some robust control problems of tandem cold mill.

Model and Heuristics for the Heterogeneous Fixed Fleet Vehicle Routing Problem with Pick-Up and Delivery

  • Zhai, Shuai;Mao, Chao
    • Journal of Distribution Science
    • /
    • v.10 no.12
    • /
    • pp.19-24
    • /
    • 2012
  • Purpose - This paper discusses the heterogeneous fixed fleet vehicle routing problem with pick-up and delivery (HFFVRPPD), for vehicles with different capacities, fixed costs, and travel costs. Research Design, data, methodology - This paper made nine assumptions for establishing a mathematical model to describe HFFVRPPD. It established a practical mathematical model, and because of the non-deterministic polynomial-time hard (NP-hard), improved the traditional simulated annealing algorithm and tested a new algorithm using a certain scale model. Result - We calculated the minimum cost of the heterogeneous fixed fleet vehicle routing problem (HFFVRP) with a single task and, on comparing the results with the actual HFFVRP for the single task alone, observed that the total cost of HFFVRPPD reduced significantly by 46.7%. The results showed that the new algorithm provides better solutions and stability. Conclusions - This paper, by comparing the HFFVRP and HFFVRPPD results, highlights certain advantages of using HFFVRPPD in physical distribution enterprises, such as saving distribution vehicles, reducing logistics cost, and raising economic benefits.

  • PDF

EPIDEMIOLOGICAL APPROACH TO THE SOUTH KOREAN BEEF PROTESTS WITH HIDDEN AGENDA

  • Do, Tae-Sug;Lee, Young-S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.3
    • /
    • pp.181-188
    • /
    • 2009
  • Hundreds of thousands of South Korean protesters staged candlelight vigils and demonstrations against US beef imports in 2008. The problems, however, went far beyond that of beef imports. The political party veterans, who lost the presidential election, exploited labor unions that were discontent with the economy and ideological student groups to weaken the majority party. In this study, an epidemiological model is constructed with a system of three nonlinear differential equations. The model seeks to examine the dynamics of the system through stability analysis. Two threshold conditions that spread the protests are identified and a sensitivity analysis on the conditions is performed to isolate the parameters to which the system is most responsive. The results are also explored by deterministic simulations. This model can be easily modified to apply to other protests that may occur in various circumstances.

  • PDF

Reliability Evaluation of a Pin Puller via Monte Carlo Simulation

  • Lee, Hyo-Nam;Jang, Seung-gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.537-547
    • /
    • 2015
  • A Monte Carlo (MC) simulation was conducted to predict the reliability of a newly developed pyrotechnic pin puller. The reliability model is based on the stress-strength interference model that states that failure occurs if the stress exceeds the strength. In this study, the stress is considered to be the energy consumed by movement of a pin shaft, and the strength is considered to be the energy generated by pyrotechnic combustion for driving the pin shaft. Failure of the pin puller can thus be defined as the consumed energy being greater than the generated energy. These energies were calculated using a performance model formulated in the previous study of the present authors. The MC method was used to synthesize the probability densities of the two energies and evaluate the reliability of the pin puller. From a probabilistic perspective, the calculated reliability was compared to a deterministic safety factor. A sensitivity analysis was also conducted to determine which design parameters most affect the reliability.