• Title/Summary/Keyword: deterministic design optimization

Search Result 118, Processing Time 0.024 seconds

Robust Optimization of Caliper Brake Disc Considering Tolerance (설계변수 및 매개변수의 공차를 고려한 캘리퍼 디스크 브레이크의 강건설계)

  • Kim, Jong-Hun;Park, Jeong-Min;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.905-913
    • /
    • 2003
  • Generally, most of optimization have been performed with fixed sizes and variables. But, the optimum value considering tolerance of design variables and material properties, might be useless owing to exist in infeasible region. It is needed that the tolerance of design variables and material properties is considered for a real design problem. A deterministic optimal solution can be in the feasible region by performing robust optimization considering tolerance. In the paper, robust design is suggested to gain an optimum insensitive to variation of design variables and it is applied for optimization problem of caliper disc brakes for vehicles.

Optimal design of reinforced concrete beams: A review

  • Rahmanian, Ima;Lucet, Yves;Tesfamariam, Solomon
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.457-482
    • /
    • 2014
  • This paper summarizes available literature on the optimization of reinforced concrete (RC) beams. The objective of optimization (e.g. minimum cost or weight), the design variables and the constraints considered by different studies vary widely and therefore, different optimization methods have been employed to provide the optimal design of RC beams, whether as isolated structural components or as part of a structural frame. The review of literature suggests that nonlinear deterministic approaches can be efficiently employed to provide optimal design of RC beams, given the small number of variables. This paper also presents spreadsheet implementation of cost optimization of RC beams in the familiar MS Excel environment to illustrate the efficiency of the exhaustive enumeration method for such small discrete search spaces and to promote its use by engineers and researchers. Furthermore, a sensitivity analysis is performed on the contribution of various design parameters to the variability of the overall cost of RC beams.

Reliability-Based Optimal Design of Pillar Sections Considering Fundamental Vibration Modes of Vehicle Body Structure (차체 기본 진동 모드를 고려한 필러 단면의 신뢰성 최적설계)

  • Lee Sang Beom;Yim Hong Jae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.107-113
    • /
    • 2004
  • This paper presents the pillar section optimization technique considering the reliability of the vehicle body structure consisted of complicated thin-walled panels. The response surface method is utilized to obtain the response surface models that describe the approximate performance functions representing the system characteristics on the section properties of the pillar and on the mass and the natural frequencies of the vehicle B.I.W. The reliability-based design optimization on the pillar sections Is performed and compared with the conventional deterministic optimization. The FORM is applied for the reliability analysis of the vehicle body structure. The developed optimization system is applied to the pillar section design considering the fundamental natural frequencies of passenger car body structure. By applying the proposed RBDO technique, it can be possible to optimize the pillar sections considering the reliability that engineers require.

A New Product Development Using Robust Design and Decision Making Process

  • Lin, Than;Doan, Trieu An;Vu, Ngoc Anh;Cho, Guk-Hyun;Lee, Jae-Woo;Byun, Yung-Hwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.41-48
    • /
    • 2007
  • This paper presents a design methodology for developing a new push scooter. A case study is clone with effective planning processes to ensure the product quality under the different phases of a product design process. Parametric model based design process simulation and optimization is implemented by using ANSYS application tool. The relationship matrix and decision matrix are drawn by using several methods. The simulation results for deterministic design and robust design are compared. This entire design process phase can support the design and quality improvements for a new product development.

  • PDF

A STUDY ABOUT MULTI-POINT RELIABILITY BASED DESIGN OPTIMIZATION OF FLEXIBLE WING (신뢰성을 고려한 유연 날개의 다점 최적 설계에 관한 연구)

  • Kim S.W.;Lee J.H.;Kwon J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.99-104
    • /
    • 2005
  • For the efficient reliability analysis, Bi-direction two-point approximation(BTPA) method is developed which solves shortcomings of conventional two-point approximation(TPA) methods that generate an approximate surface with low accuracy or sometimes do an unstable approximate surface. The conventional reliability based design optimization(RBDO) methods require high computational cost compared with the deterministic design optimization(DO) methods. To overcome the computational inefficiency of RBDO, the approximate reliability analysis approaches on the TPA surface are proposed. Using these FORM and SORM analysis strategies, multi-point aerodynamic-structure interacted shape design optimizations with uncertainty are performed very efficiently.

  • PDF

Well-Conditioned Observer Design via LMI (LMI를 이용한 Well-Conditioned 관측기 설계)

  • 허건수;정종철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.21-26
    • /
    • 2003
  • The well-conditioned observer in a stochastic system is designed so that the observer is less sensitive to the ill-conditioning factors in transient and steady-state observer performance. These factors include not only deterministic issues such as unknown initial estimation error, round-off error, modeling error and sensing bias, but also stochastic issues such as disturbance and sensor noise. In deterministic perspectives, a small value in the L$_2$ norm condition number of the observer eigenvector matrix guarantees robust estimation performance to the deterministic issues and its upper bound can be minimized by reducing the observer gain and increasing the decay rate. Both deterministic and stochastic issues are considered as a weighted sum with a LMI (Linear Matrix Inequality) formulation. The gain in the well-conditioned observer is optimally chosen by the optimization technique. Simulation examples are given to evaluate the estimation performance of the proposed observer.

  • PDF

Study of Efficient Aerodynamic Shape Design Optimization with Uncertainties (신뢰성을 고려한 효율적인 공력 형상 최적 설계에 대한 연구)

  • 김수환;권장혁
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.18-27
    • /
    • 2006
  • The conventional reliability based design optimization(RBDO) methods require high computational cost compared with the deterministic design optimization(DO) methods, therefore it is hard to apply directly to large-scaled problems such as an aerodynamic shape design optimization. In this study, to overcome this computational limitation the efficient RBDO procedure with the two-point approximation(TPA) and adjoint sensitivity analysis is proposed, that the computational requirement is nearly the same as DO and the reliability accuracy is good compared with that of RBDO. Using this, the 3-D aerodynamic shape design optimization is performed very efficiently.

A 3-D Wing Aerodynamic Design Optimization Considering Uncertainty Effects (불확실성 요소들을 고려한 3차원 날개의 공력 최적설계)

  • Ahn Joongki;Kim Suhwan;Kwon Jang Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.9-16
    • /
    • 2004
  • This study presents results of aerodynamic wing optimization under uncertainties. To consider uncertainties, an alternative strategy for reliability-based design optimization(RBDO) is developed. The strategy utilizes a single loop algorithm and a sequential approximation optimization(SAO) technique. The SAO strategy relies on the trust region-SQP framework which validates approximated functions at every iteration. Further improvement in computational efficiency is achieved by applying the same sensitivity of limit state functions in the reliability analysis and in the equivalent deterministic constraint calculation. The framework is examined by solving an analytical test problem to show that the proposed framework has the computational efficiency over existing methods. The proposed strategy enables exploiting the RBDO technique in aerodynamic design. For the aerodynamic wing design problem, the solution converges to the reliable point satisfying the probabilistic constraints.

  • PDF

Sampling-Based Sensitivity Approach to Electromagnetic Designs Utilizing Surrogate Models Combined with a Local Window

  • Choi, Nak-Sun;Kim, Dong-Wook;Choi, K.K.;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.74-79
    • /
    • 2013
  • This paper proposes a sampling-based optimization method for electromagnetic design problems, where design sensitivities are obtained from the elaborate surrogate models based on the universal Kriging method and a local window concept. After inserting additional sequential samples to satisfy the certain convergence criterion, the elaborate surrogate model for each true performance function is generated within a relatively small area, called a hyper-cubic local window, with the center of a nominal design. From Jacobian matrices of the local models, the accurate design sensitivity values at the design point of interest are extracted, and so they make it possible to use deterministic search algorithms for fast search of an optimum in design space. The proposed method is applied to a mathematical problem and a loudspeaker design with constraint functions and is compared with the sensitivity-based optimization adopting the finite difference method.

Structural Optimization using Reliability Analysis (신뢰성 해석을 이용한 구조최적화)

  • Park, Jae-Yong;Lim, Min-Kyu;Oh, Young-Kyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.224-229
    • /
    • 2010
  • This paper presents a reliability-based topology optimization (RBTO) using bi-directional evolutionary structural optimization (BESO). An actual design involves uncertain conditions such as material property, operational load and dimensional variation. Deterministic topology optimization (DTO) is obtained without considering of uncertainties related to the uncertainty parameters. However, the RBTO can consider the uncertainty variables because it has the probabilistic constraints. In this paper, the reliability index approach (RIA) is adopted to evaluate the probabilistic constraint. RBTO based on BESO starting from various design domains produces a similar optimal topology each other. Numerical examples are presented to compare the DTO with the RBTO.