• Title/Summary/Keyword: deterministic allocation

Search Result 29, Processing Time 0.025 seconds

Optimization Methodology for Sales and Operations Planning by Stochastic Programming under Uncertainty : A Case Study in Service Industry (불확실성하에서의 확률적 기법에 의한 판매 및 실행 계획 최적화 방법론 : 서비스 산업)

  • Hwang, Seon Min;Song, Sang Hwa
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.4
    • /
    • pp.137-146
    • /
    • 2016
  • In recent years, business environment is faced with multi uncertainty that have not been suffered in the past. As supply chain is getting expanded and longer, the flow of information, material and production is also being complicated. It is well known that development service industry using application software has various uncertainty in random events such as supply and demand fluctuation of developer's capcity, project effective date after winning a contract, manpower cost (or revenue), subcontract cost (or purchase), and overrun due to developer's skill-level. This study intends to social contribution through attempts to optimize enterprise's goal by supply chain management platform to balance demand and supply and stochastic programming which is basically applied in order to solve uncertainty considering economical and operational risk at solution supplier. In Particular, this study emphasizes to determine allocation of internal and external manpower of developers using S&OP (Sales & Operations Planning) as monthly resource input has constraint on resource's capability that shared in industry or task. This study is to verify how Stochastic Programming such as Markowitz's MV (Mean Variance) model or 2-Stage Recourse Model is flexible and efficient than Deterministic Programming in software enterprise field by experiment with process and data from service industry which is manufacturing software and performing projects. In addition, this study is also to analysis how profit and labor input plan according to scope of uncertainty is changed based on Pareto Optimal, then lastly it is to enumerate limitation of the study extracted drawback which can be happened in real business environment and to contribute direction in future research considering another applicable methodology.

A Study on the Bandwidth Allocation Control of Virtual Paths in ATM Networks for Multimedia Service (멀티미디어 서비스를 위한 ATM망에서 가상경로의 대역폭 할당 제어에 관한 연구)

  • Jang, Yung-Chul;Lee, Jung-Jei;Oh, Moo-Song
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.6
    • /
    • pp.1433-1442
    • /
    • 1997
  • Algorithm design is needed to optimized bandwidth which satisfy quality of service(QoS) requirements of vary traffic classes for Multimedia service in ATM networks. The diverse flow characteristics e.g., burstiness, bit rate and burst length, have to guarantee the different quality of service(QoS) requirements in Asynchronous Transfer Mode(ATM). The QoS parameter may be measured in terms of cell loss probability and maximum cell dely. In this paper, we consider the ATM networks which the virtual path(vip) concept is implemented by applying the Markov Modulated Deterministic Process method. We develop an efficient algorithm to computer the minimum capacity required to satisfy all the QoS requirements when multiple classes of on-off source are multiplexed on single VP. Using above the result, we propose a simple algorithm to determine the VP combination to achieve the near optimum of total capacity required for satisfying the individual QoS requirements. Numerical results are also presented to demonstrate the performance of the algorithm, when compared to the optimal total capacity required.

  • PDF

Web-based Three-step Project Management Model and Its Software Development

  • Hwang Heung-Suk;Cho Gyu-Sung
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.373-378
    • /
    • 2006
  • Recently the technical advances and complexities have generated much of the difficulties in managing the project resources, for both scheduling and costing to accomplish the project in the most efficient manner. The project manager is frequently required to render judgments concerning the schedule and resource adjustments. This research develops an analytical model for a schedule-cost and risk analysis based on visual PERT/CPM. We used a three-step approach: 1) in the first step, a deterministic PERT/CPM model for the critical path and estimating the project time schedule and related resource planning and we developed a heuristic model for crash and stretch out analysis based upon a time-cost trade-off associated with the crash and stretch out of the project. 2) In second step, we developed web-based risk evaluation model for project analysis. Major technologies used for this step are AHP (analytic hierarchy process, fuzzy-AHP, multi-attribute analysis, stochastic network simulation, and web based decision support system. Also we have developed computer programs and have shown the results of sample runs for an R&D project risk analysis. 3) We developed an optimization model for project resource allocation. We used AHP weighted values and optimization methods. Computer implementation for this model is provided based on GUI-Type objective-oriented programming for the users and provided displays of all the inputs and outputs in the form of GUI-Type. The results of this research will provide the project managers with efficient management tools.

  • PDF

A Study on Deterministic Utilization of Facilities for Allocation in the Semiconductor Manufacturing (반도체 설비의 효율성 제고를 위한 설비 할당 스케줄링 규칙에 관한 연구)

  • Kim, Jeong Woo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.153-161
    • /
    • 2016
  • Semiconductor manufacturing has suffered from the complex process behavior of the technology oriented control in the production line. While the technological processes are in charge of the quality and the yield of the product, the operational management is also critical for the productivity of the manufacturing line. The fabrication line in the semiconductor manufacturing is considered as the most complex part because of various kinds of the equipment, re-entrant process routing and various product devices. The efficiency and the productivity of the fabrication line may give a significant impact on the subsequent processes such as the probe line, the assembly line and final test line. In the management of the re-entrant process such as semiconductor fabrication, it is important to keep balanced fabrication line. The Performance measures in the fabrication line are throughput, cycle time, inventory, shortage, etc. In the fabrication, throughput and cycle time are the conflicting performance measures. It is very difficult to achieve two conflicting goal simultaneously in the manufacturing line. The capacity of equipment is important factor in the production planning and scheduling. The production planning consideration of capacity can make the scheduling more realistic. In this paper, an input and scheduling rule are to achieve the balanced operation in semiconductor fabrication line through equipment capacity and workload are proposed and evaluated. New backward projection and scheduling rule consideration of facility capacity are suggested. Scheduling wafers on the appropriate facilities are controlled by available capacity, which are determined by the workload in terms of the meet the production target.

Dynamic Buffer Allocation Scheme for Caching in Realtime Multimedia Systems (실시간 멀티미디어 시스템에서의 캐슁을 위한 동적 버퍼 할당 기법)

  • Kwon, Jin-Baek;Yeom, Heon-Young;Lee, Kyung-Oh
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.4
    • /
    • pp.420-430
    • /
    • 2000
  • Several caching schemes for realtime multimedia systems have been proposed, but they focus only on increasing the hit ratio without providing any means to utilize the saved disk bandwidth due to cache hits. One of the most important metrics in multimedia systems is the number of clients that the systems can service simultaneously guaranteeing Quality of Service(QoS). Preemptive but Safe Interval Caching(PSIC) was proposed as a caching scheme which makes it possible to provide deterministic QoS.. However, it has no ability to adapt to the change of system environments since it has no mechanism to change the cache size. In this paper, we present a new caching scheme, Dynamic Interval Caching(DIC), which maximizes the performance, regardless of the change of system environments, providing hiccup-free service, by managing memory buffers dynamically. And it is demonstrated that DIC allocates buffer cache optimally, by comparing with PSIC through trace-driven simulations.

  • PDF

Chaos analysis of real estate auction sale price rate time series (부동산 경매 낙찰가율 시계열의 Chaos 분석)

  • Kang, Jun;Kim, Jiwoo;Lee, Hyun Jun;Oh, Kyong Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.371-381
    • /
    • 2017
  • There has never been research on Chaos analysis using real estate auction sale price rate in Korea. In this study, three Chaos analysis methodologies - Hurst exponent, correlation dimension, and maximum Lyapunov exponent - in order to capture the nonlinear deterministic dynamic system characteristics. High level of Hurst exponent and the extremely low maximum Lyapunov exponent provide the tendency and the persistence of the data. The empirical results give two meaningful facts. First, monthly time lags of the correlation dimension are coincident with the time period from the approval auction start day to the sale price fixing day. Second, its weekly time lags correspond to the time period from the last day of request for sale price allocation to the sale price fixing day. Then, this study potentially examines the predictability of the real estate auction price rate time series.

OPTIMIZING QUALITY AND COST OF METAL CURTAIN WALL USING MULTI-OBJECTIVE GENETIC ALGORITHM AND QUALITY FUNCTION DEPLOYMENT

  • Tae-Kyung Lim;Chang-Baek Son;Jae-Jin Son;Dong-Eun Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.409-416
    • /
    • 2009
  • This paper presents a tool called Quality-Cost optimization system (QCOS), which integrates Multi-Objective Genetic Algorithm (MOGA) and Quality Function Deployment (QFD), for tradeoff between quality and cost of the unitized metal curtain-wall unit. A construction owner as the external customer pursues to maximize the quality of the curtain-wall unit. However, the contractor as the internal customer pursues to minimize the cost involved in designing, manufacturing and installing the curtain-wall unit. It is crucial for project manager to find the tradeoff point which satisfies the conflicting interests pursued by the both parties. The system would be beneficial to establish a quality plan satisfying the both parties. Survey questionnaires were administered to the construction owner who has an experience of curtain-wall project, the architects who are the independent assessor, and the contractors who were involved in curtain-wall design and installation. The Customer Requirements (CRs) and their importance weights, the relationship between CRs and Technical Attributes (TAs) consisting of a curtain-wall unit, and the cost ratios of each components consisting curtain-wall unit are obtained from the three groups mentioned previously. The data obtained from the surveys were used as the QFD input to compute the Owner Satisfaction (OS) and Contractor Satisfaction (CS). MOGA is applied to optimize resource allocation under limited budget when multi-objectives, OS and CS, are pursued at the same time. The deterministic multi-objective optimization method using MOGA and QFD is extended to stochastic model to better deal with the uncertainties of QFD input and the variability of QFD output. A case study demonstrates the system and verifies the system conformance.

  • PDF

Design of User Clustering and Robust Beam in 5G MIMO-NOMA System Multicell (5G MIMO-NOMA 시스템 멀티 셀에서의 사용자 클러스터링 및 강력한 빔 설계)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2018
  • In this paper, we present a robust beamforming design to tackle the weighted sum-rate maximization (WSRM) problem in a multicell multiple-input multiple-output (MIMO) - non-orthogonal multipleaccess (NOMA) downlink system for 5G wireless communications. This work consider the imperfectchannel state information (CSI) at the base station (BS) by adding uncertainties to channel estimation matrices as the worst-case model i.e., singular value uncertainty model (SVUM). With this observation, the WSRM problem is formulated subject to the transmit power constraints at the BS. The objective problem is known as on-deterministic polynomial (NP) problem which is difficult to solve. We propose an robust beam forming design which establishes on majorization minimization (MM) technique to find the optimal transmit beam forming matrix, as well as efficiently solve the objective problem. In addition, we also propose a joint user clustering and power allocation (JUCPA) algorithm in which the best user pair is selected as a cluster to attain a higher sum-rate. Extensive numerical results are provided to show that the proposed robust beamforming design together with the proposed JUCPA algorithm significantly increases the performance in term of sum-rate as compared with the existing NOMA schemes and the conventional orthogonal multiple access (OMA) scheme.

Development of Intelligent ATP System Using Genetic Algorithm (유전 알고리듬을 적용한 지능형 ATP 시스템 개발)

  • Kim, Tai-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.131-145
    • /
    • 2010
  • The framework for making a coordinated decision for large-scale facilities has become an important issue in supply chain(SC) management research. The competitive business environment requires companies to continuously search for the ways to achieve high efficiency and lower operational costs. In the areas of production/distribution planning, many researchers and practitioners have developedand evaluated the deterministic models to coordinate important and interrelated logistic decisions such as capacity management, inventory allocation, and vehicle routing. They initially have investigated the various process of SC separately and later become more interested in such problems encompassing the whole SC system. The accurate quotation of ATP(Available-To-Promise) plays a very important role in enhancing customer satisfaction and fill rate maximization. The complexity for intelligent manufacturing system, which includes all the linkages among procurement, production, and distribution, makes the accurate quotation of ATP be a quite difficult job. In addition to, many researchers assumed ATP model with integer time. However, in industry practices, integer times are very rare and the model developed using integer times is therefore approximating the real system. Various alternative models for an ATP system with time lags have been developed and evaluated. In most cases, these models have assumed that the time lags are integer multiples of a unit time grid. However, integer time lags are very rare in practices, and therefore models developed using integer time lags only approximate real systems. The differences occurring by this approximation frequently result in significant accuracy degradations. To introduce the ATP model with time lags, we first introduce the dynamic production function. Hackman and Leachman's dynamic production function in initiated research directly related to the topic of this paper. They propose a modeling framework for a system with non-integer time lags and show how to apply the framework to a variety of systems including continues time series, manufacturing resource planning and critical path method. Their formulation requires no additional variables or constraints and is capable of representing real world systems more accurately. Previously, to cope with non-integer time lags, they usually model a concerned system either by rounding lags to the nearest integers or by subdividing the time grid to make the lags become integer multiples of the grid. But each approach has a critical weakness: the first approach underestimates, potentially leading to infeasibilities or overestimates lead times, potentially resulting in excessive work-inprocesses. The second approach drastically inflates the problem size. We consider an optimized ATP system with non-integer time lag in supply chain management. We focus on a worldwide headquarter, distribution centers, and manufacturing facilities are globally networked. We develop a mixed integer programming(MIP) model for ATP process, which has the definition of required data flow. The illustrative ATP module shows the proposed system is largely affected inSCM. The system we are concerned is composed of a multiple production facility with multiple products, multiple distribution centers and multiple customers. For the system, we consider an ATP scheduling and capacity allocationproblem. In this study, we proposed the model for the ATP system in SCM using the dynamic production function considering the non-integer time lags. The model is developed under the framework suitable for the non-integer lags and, therefore, is more accurate than the models we usually encounter. We developed intelligent ATP System for this model using genetic algorithm. We focus on a capacitated production planning and capacity allocation problem, develop a mixed integer programming model, and propose an efficient heuristic procedure using an evolutionary system to solve it efficiently. This method makes it possible for the population to reach the approximate solution easily. Moreover, we designed and utilized a representation scheme that allows the proposed models to represent real variables. The proposed regeneration procedures, which evaluate each infeasible chromosome, makes the solutions converge to the optimum quickly.