• Title/Summary/Keyword: deteriorated

Search Result 2,349, Processing Time 0.029 seconds

Performance Assessment of Deteriorated Reinforced Concrete Bridge Columns (열화된 철근콘크리트 교각의 성능평가)

  • Kim, Tae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.45-54
    • /
    • 2011
  • This paper presents a nonlinear finite element analysis procedure for the performance assessment of deteriorated reinforced concrete bridge columns. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used to analyze these reinforced concrete structures. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. Advanced deteriorated material models are developed to predict behaviors of deteriorated reinforced concrete bridge columns. The proposed numerical method for the performance of damaged reinforced concrete bridge columns is verified by comparison with reliable experimental results.

Comparing Performances of Factors for Reducing Energy at Deteriorated Elementary School Buildings (노후 초등학교 건물에너지 절감을 위한 요소기술의 성능 비교)

  • Lhee, Sang-Choon;Choi, Young-Joon;Kim, Hyun-Ki;Choi, Yool
    • KIEAE Journal
    • /
    • v.12 no.2
    • /
    • pp.111-116
    • /
    • 2012
  • Faced with the international issue of environmental problems from global warming and energy consumption, the Korean Government has made many efforts on reducing energy and $CO_2$ emission under the motto of "Low-Carbon Green Growth". In order to reduce energy in the building sector, severe design standards and regulations on saving energy in new buildings have been established. Now, it is necessary to focus on deteriorated buildings where applications of energy saving designs and techniques have been insufficient, for maximizing energy saving in the building sector. Specially, it is very important to reduce energy through the remodeling process at deteriorated school buildings which were built over 20 years ago and sharply changed into the excessive energy consumption structure from new educational curricula. Thus, this paper examined the effects of potential factors to reduce energy at deteriorated elementary school buildings using the energy simulation on the Visual DOE 4.0 program. Among applied factors of insulations, southern louver, window's SHGC, indoor setup temperature, and system efficiency, all factors except window's SHGC turned out contribute to reduce energy at the deteriorated elementary school buildings, compared with the baseline energy performance.

Determining the Priority of Factors for Reducing Energy at Deteriorated School Buildings Using AHP Method (AHP 방법을 이용한 노후학교 에너지절감을 위한 요소기술의 우선순위 결정)

  • Lhee, Sang-Choon;Choi, Young-Joon;Choi, Yool
    • KIEAE Journal
    • /
    • v.11 no.6
    • /
    • pp.127-132
    • /
    • 2011
  • Since the late 20th century, countries of the world have made every effort to solve environmental problems due to global warming. The Korean Government has also made various efforts on reducing energy and $CO_2$ emission under the motto of "Low-Carbon Green Growth". In order to achieve the goal to reduce energy in the construction field, severe design standards and regulations on saving energy in new buildings have been established. However, for maximizing the reduction of energy in buildings, it is time to focus on deteriorated buildings where applications of energy saving designs and techniques have been insufficient. Especially, there are little guidelines and researches on reducing energy through remodeling at deteriorated school buildings which were built over 20 years ago. This paper suggests the priority of factors to reduce energy on the remodeling process at deteriorated school buildings using the AHP(Analytic Hierarchy Process) method. For applying the AHP method, the survey of staffs in the Education Offices and board members in the Korea Institute of Ecological Architecture and Environment was conducted via e-mail. As a result, factors of insulation, daylighting, system control, and windows turned out important in the energy reducing remodeling process at deteriorated school buildings, while factors of artificial lighting, solar heating, ventilation, and system did relatively unimportant.

Load carrying capacity of deteriorated reinforced concrete columns

  • Tapan, Mucip;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • v.6 no.6
    • /
    • pp.473-490
    • /
    • 2009
  • This paper presents a new methodology to evaluate the load carrying capacity of deteriorated non-slender concrete bridge pier columns by construction of the full P-M interaction diagrams. The proposed method incorporates the actual material properties of deteriorated columns, and accounts for amount of corrosion and exposed corroded bar length, concrete loss, loss of concrete confinement and strength due to stirrup deterioration, bond failure, and type of stresses in the corroded reinforcement. The developed structural model and the damaged material models are integrated in a spreadsheet for evaluating the load carrying capacity for different deterioration stages and/or corrosion amounts. Available experimental and analytical data for the effects of corrosion on short columns subject to axial loads combined with moments (eccentricity induced) are used to verify the accuracy of proposed model. It was observed that, for the limited available experimental data, the proposed model is conservative and is capable of predicting the load carrying capacity of deteriorated reinforced concrete columns with reasonable accuracy. The proposed analytical method will improve the understanding of effects of deterioration on structural members, and allow engineers to qualitatively assess load carrying capacity of deteriorated reinforced concrete bridge pier columns.

Evaluating Performance of Energy Conservation Measures on Energy-Efficient Remodeling at Deteriorated High School Buildings (노후 고등학교 건물의 에너지효율화 리모델링을 위한 요소기술의 성능 평가)

  • Lhee, Sang Choon;Choi, Young Joon;Choi, Yool
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.97-102
    • /
    • 2013
  • Many countries over the world have acknowledged the global warming problem by greenhouse gas emission and tried to solve the problem. The Korean government has also taken many actions such as The Act on Low Carbon, Green Growth and on Promoting Green Building in that architectural building section takes 1/4 of national greenhouse gas emission. Under the situation that buildings constructed 15 years ago when insulation standards were reinforced take about 74%, The Plan on Vitalizing Green Remodeling, finally established on July 2013, will induce energy-efficient remodeling of deteriorated buildings. Using the energy simulation by the Visual DOE 4.0 program, this paper proposed the ways of energy-efficient remodeling of deteriorated high school buildings by measuring energy saving performance of factors that were drawn from the previous study. The factors considered are insulation, window's SHGC, south louver, system efficiency, and indoor setting temperature. Among them, all factors except SHGC proved contribution to reducing energy use at deteriorated high school buildings, compared with the baseline energy consumption.

Proposal of Domestic Road Bridge Deck Deterioration Models and Forecast of Replacement Demand (국내 도로교량 바닥판 열화모델 제안 및 교체 수요 예측)

  • Kim, Jin-Kwang;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.61-68
    • /
    • 2017
  • Bridge decks are members that rapidly deteriorated due to various environmental factors such as heavy vehicle and deicing salt, etc. As the lifespan of bridges built in Korea increases, it is expected that the demand for replacing the deteriorated bridge decks will increase. In other countries, Accelerated Bridge Construction technology using precast decks is already actively being used as a countermeasure for replacement demand of deteriorated bridge decks. In this study, bridge decks deterioration models are proposed by collecting and analysing the condition index data of domestic bridge decks. Also, the future replacement demands of deteriorated bridge decks in terms of replacement time and replacement scale are predicted.

A Study on the Electrical-Fire Analysis and Firing Characteristics of Power Cord by Thermal Stress (열적 피로에 의한 전원코드의 발화 특성과 전기화재 분석에 관한 연구)

  • 최충석;송길목;김향곤;김동욱;김동우
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2003.04a
    • /
    • pp.164-170
    • /
    • 2003
  • In this paper, we studied on the firing characteristics and electrical fire analysis of power cord deteriorated by thermal stress. The cross section of PVC insulating cord deteriorated by indirect flame decreased through heat convection. PVC insulating cord deteriorated by direct flame was bumpy shape. The exothermic peak of normal cord was shown at ($526.7^{\circ}C$), but the peaks or on(heat treatment temperature) ($150^{\circ}C$) cord was shown at ($299.6^{\circ}C$) and [$502.2^{\circ}C$]. The exothermic peaks according to high temperature were similar to those of amorphous carbon. In the FT-IR analysis, the absorption peak of normal cord indicated double bond of oxygen and carbon in benzene ring at 1720.0$cm^{1}$. As the HTT was high, the height of characteristic peak decreased and the peak of carbonyl group was shown at about 1625.7$cm^{-1}$. The characteristic peak of single bond(O-H) was shown at about 3479.2$cm^{-1}$. In case of the internal part of wire covering deteriorated by over current, the characteristic peak were shown at about 3417.3$cm^{-1}$ and 1600.2$cm^{-1}$. The above results show that we can distinguish the differences according to the fire pattern through the internalㆍexternal analysis of wire covering deteriorated by heat.

  • PDF

Seismic rehabilitation of substandard RC columns with partially deteriorated concrete using CFRP composites

  • Hou, Dongxu;Wu, Zhimin;Zheng, Jianjun;Cui, Yao
    • Computers and Concrete
    • /
    • v.15 no.1
    • /
    • pp.1-20
    • /
    • 2015
  • Many existing reinforced concrete (RC) columns in structures tend to become substandard RC ones due to updated standards or environmental changes. These substandard columns may alter the behaviors of the whole structure and therefore are in urgent need of seismic retrofitting. Owing to their superior advantages, carbon fiber reinforced polymer (CFRP) composites are widely used to retrofit RC columns. The applications mainly focus on various substandard RC columns, but few deals with substandard columns with deteriorated concrete, especially damaged by earthquake. The purpose of this paper is to investigate the seismic behaviors of CFRP reinforced partially deteriorated RC columns and to evaluate the effect of CFRP sheets on them. Six flexure-dominant columns were tested under a constant axial load and transverse cyclic displacements. It is found that the seismic behaviors of partially deteriorated columns can be recovered by wrapping CFRP sheets on them. Numerical analysis is then conducted using finite element methods and verified with experimental results. The effects of the axial load ratio, the ratio of the thickness of CFRP sheet to the column diameter, and the slenderness ratio on the seismic behaviors of CFRP reinforced RC columns are evaluated. Finally, a method is proposed to determine the required thickness of CFRP sheet.

Deterioration Characteristics of ZnO Surge Arrester Blocks for Power Distribution Systems Due to Impulse Currents (임펄스전류에 의한 배전용 ZnO 피뢰기 소자의 열화특성)

  • Lee, Bok-Hee;Cho, Sung-Chul;Yang, Soon-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.79-86
    • /
    • 2013
  • In order to analyze the electrical performance of ZnO surge arresters stressed by the combined DC and AC voltages that are generated in DC/AC converter systems, the leakage current properties of ZnO surge arrester blocks deteriorated by impulse currents were investigated. The test specimens were deteriorated by the 8/$20{\mu}s$ impulse current of 2.5kA and the leakage currents flowing into the deteriorated zinc oxide(ZnO) arrester blocks subjected to the combined DC and power frequency AC voltages are measured. As a result, the leakage currents flowing through deteriorated ZnO surge arrester blocks were higher than those flowing through the fine ZnO surge arrester blocks and the larger the injection number of 8/$20{\mu}s$ impulse current of 2.5kA is, the greater the leakage current is. The leakage current-voltage curves(I-V curves) of the fine and deteriorated ZnO surge arrester blocks stressed by the combined DC and AC voltages show significant difference in the low conduction region. Also the cross-over phenomenon is observed at the voltage close to the knee of conduction on plots of I-V curves.

Deterioration of Concrete Columns under Sea-Water and Strengthening Analysis (해수중 콘크리트 기둥의 열화 및 보강성능해석)

  • 김규엽;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1169-1174
    • /
    • 2001
  • In this study, the behavior of deteriorated concrete columns under sea-water before and after strengthening with glass fiber composite and the change of behavior by the deterioration of strengthening material are analyzed. In the analysis, the characteristics of concrete deteriorated in sea-water, preloading effect, and corrosion of steel are considered. The result of analysis is verified by the comparison with the experimental data. Using constitutive equations of the concrete and corroded steel, load-moment interaction curves of both deteriorated and strengthened concrete column are derived.

  • PDF