• Title/Summary/Keyword: detection equipment

Search Result 880, Processing Time 0.029 seconds

A Study on the Thermo-Mechanical Fatigue Loading for Time Reduction in Fabricating an Artificial Cracked Specimen (열-기계적 피로하중을 받는 균열시편 제작시간 단축에 관한 연구)

  • Lee, Gyu-Beom;Choi, Joo-Ho;An, Dae-Hwan;Lee, Bo-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.35-42
    • /
    • 2008
  • In the nuclear power plant, early detection of fatigue crack by non-destructive test (NDT) equipment due to the thermal cyclic load is very important in terms of strict safety regulation. To this end, many efforts are exerted to the fabrication of artificial cracked specimen for practicing engineers in the NDT company. The crack of this kind, however, cannot be made by conventional machining, but should be made under thermal cyclic load that is close to the in-situ condition, which takes tremendous time due to the repetition. In this study, thermal loading condition is investigated to minimize the time for fabricating the cracked specimen using simulation technique which predicts the crack initiation and propagation behavior. Simulation and experiment are conducted under an initial assumed condition for validation purpose. A number of simulations are conducted next under a variety of heating and cooling conditions, from which the best solution to achieve minimum time for crack with wanted size is found. In the simulation, general purpose software ANSYS is used for the stress analysis, MATLAB is used to compute crack initiation life, and ZENCRACK, which is special purpose software for crack growth prediction, is used to compute crack propagation life. As a result of the study, the time for the crack to reach the size of 1mm is predicted from the 418 hours at the initial condition to the 319 hours at the optimum condition, which is about 24% reduction.

A Study on Technique for Image Quality Enhancement to Maximize Container Inspection Efficiency (컨테이너 검사 효율 극대화를 위한 화질 향상 기법 연구)

  • Lee, Chang-Ho;Shin, Ji-Hye;Kim, Jang-Oh;Jung, Young-Jin;Min, Byung-In
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.639-646
    • /
    • 2017
  • The purpose of this study is to present the algorithm to minimize the image noise caused by deterioration of high X-ray container inspection equipment and the faulty detection sensors, and to improvement quality of the container inspection images using MATLAB Toolbox. The daily checking images for the container inspection were used with the subject images and the noise caused by the horizontal and vertical images was evaluated with Root Mean Square (RMS) method, which is the most basic evaluation method of digital radiation image. Also, quality of the improved images was evaluated compared to quality of the orignal images. As a result, all RMS value of the improved images was lower then the original images by a mean of 13.5% in the horizontal images and 18.2% in the vertical images respectively. Also so did RMS value of the improved container images, by a mean of 13.4% in the horizontal images and 19.1% in the vertical images respectively. These findings can be verified objectively and visually and they would help the reading process of the container images be effective in Korea Customs Service.

Analysis of Survivability for Combatants during Offensive Operations at the Tactical Level (전술제대 공격작전간 전투원 생존성에 관한 연구)

  • Kim, Jaeoh;Cho, HyungJun;Kim, GakGyu
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.5
    • /
    • pp.921-932
    • /
    • 2015
  • This study analyzed military personnel survivability in regards to offensive operations according to the scientific military training data of a reinforced infantry battalion. Scientific battle training was conducted at the Korea Combat Training Center (KCTC) training facility and utilized scientific military training equipment that included MILES and the main exercise control system. The training audience freely engaged an OPFOR who is an expert at tactics and weapon systems. It provides a statistical analysis of data in regards to state-of-the-art military training because the scientific battle training system saves and utilizes all training zone data for analysis and after action review as well as offers training control during the training period. The methodologies used the Cox PH modeling (which does not require parametric distribution assumptions) and decision tree modeling for survival data such as CART, GUIDE, and CTREE for richer and easier interpretation. The variables that violate the PH assumption were stratified and analyzed. Since the Cox PH model result was not easy to interpret the period of service, additional interpretation was attempted through univariate local regression. CART, GUIDE, and CTREE formed different tree models which allow for various interpretations.

Analysis report for readiness posture against north korea nuclear threat - Focused mainly in non-military area of government readiness posture - (북한의 핵위협 대비태세 분석 - 정부의 비군사분야 대비태세를 중심으로 -)

  • Kim, In-Tae
    • Korean Security Journal
    • /
    • no.42
    • /
    • pp.205-227
    • /
    • 2015
  • The Korean Peninsula is put in a position to carry out a highly strategic game vis-a-vis nK, which is asserting itself as a nuclear power amongst Northeast Asia's complex dynamics. While the international community recognizes nK's possession of nuclear weapons as released secret based on nK's three nuclear tests, shrewd strategic thinking is needed by ROK to secure itself as a non-nuclear nation in order to assume a responsible role to the international community, while simultaneously being ready to respond at all times for nK's military provocations. ROK must continue with its twofold strategy, by firm response to military confrontation with nK and maintaining flexible policy of tolerance in the areas of economy and ethnicity. Various strategic options to overcome nK's nuclear threats have been presented to ROK, whose possession of nuclear weapons have been difficult, and nK's nuclear capability is a real threat to ROK's national security. We must be able to respond to nK's nuclear threats strictly from ROK's national security perspective. This thesis aims to propose a response policy for nK's nuclear capability and nK's nuclear attack based on analysis of such nuclear damage, ROK Government's response posture against nK's nuclear threats, centered around ROK Government's non-military response posture.

  • PDF

A CDMA Network-based Wireless System for Measuring Lap Time on a Ski Slope (CDMA 망에 기반한 스키장 슬로프의 무선 구간 기록 측정 시스템)

  • Lee, Hyung-Bong;Park, Lae-Jeong;Moon, Jung-Ho;Chung, Tae-Yun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.1
    • /
    • pp.133-138
    • /
    • 2009
  • This paper introduces a pilot CDMA network-based wireless lap time measurement system set up on a ski slope of Yongpyong Ski Resort. The wireless lap time measurement system is one output of U-Sports Project of Gangwon Province, which is intendended for promoting local strategic business and preparation for hosting 2018 Winter Olympic Games at Pyeongchang. A pair of laser sensors is installed at the entry and exit points of a section requiring lap time measurement on a ski slope. Each laser sensor is connected to a sensor node via wire so that the sensor node can detect the time when a skier enters or exits the section. Also each sensor node is connected to a CDMA network via a modem and receives a standard time from a NTP server. Each node executes the NTP algorithm to synchronize its local time to the received server time. As a result of the time synchronization, the sensor nodes maintain its local time within a resolution of at least 10 miliseconds and transmit the time of detection to a central control center. While the wireless lap time measurement system introduced in the paper does not need expensive measurement equipment, the system allows the central control center to provide lap time records in a more convenient manner compared to conventional manual lap time measuremnt methods.

The Risk Assessment of Carbon Monoxide Poisoning by Gas Boiler Exhaust System and Development of Fundamental Preventive Technology (가스보일러 CO중독 위험성 예측 및 근원적 예방기술 개발)

  • Park, Chan Il;Yoo, Kee-Youn
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.3
    • /
    • pp.27-38
    • /
    • 2021
  • We devised the system to automatically shutdown the boiler and to fundamentally block the harmful gases, including carbon monoxide, into the indoor when the exhaust system swerves: (1) The discharge pressure of the exhaust gas decreases when the exhaust pipe is disconnected. The monitoring system of the exhaust pipe is implemented by measuring the output voltage of APS(Air Pressure Sensor) installed to control the amount of combustion air. (2) The operating software was modified so that when the system recognizes the fault condition of a flue pipe, the boiler control unit displays the fault status on the indoor regulator while shutting down the boiler. In accordance with the ventilation facility standards in the "Rules for Building Equipment Standards" by the Ministry of Land, Infrastructure and Transport, experiments were conducted to ventilate indoor air. When carbon monoxide leaked in worst-case scenario, it was possible to prevent poisoning accidents. However, since 2013, the number of indoor air exchange times has been mitigated from 0.7 to 0.5 times per hour. We observed the concentration exceeding TWA 30 ppm occasionally and thus recommend to reinforce this criterion. In conclusion, if the flue pipe fault detection and the indoor air ventilation system are introduced, carbon monoxide poisoning accidents are expected to decrease significantly. Also when the manufacturing and inspection steps, the correct installation and repair are supplemented with the user's attention in missing flue, it will be served to prevent human casualties from carbon monoxide poisoning.

A Study on Experimental Prediction of Landslide in Korea Granite Weathered Soil using Scaled-down Model Test (축소모형 실험을 통한 국내 화강암 풍화토의 산사태 예측 실험 연구)

  • Son, In-Hwan;Oh, Yong-Thak;Lee, Su-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.439-447
    • /
    • 2019
  • In this study, experiments were conducted to establish appropriate measures for slopes with high risk of collapse and to obtain results for minimizing slope collapse damage by detecting the micro-displacement of soil in advance by installing a laser sensor and a vibration sensor in the landslide reduction model experiment. Also, the behavior characteristics of the soil layer due to rainfall and moisture ratio changes such as pore water pressure and moisture were analyzed through a landslide reduction model experiment. The artificial slope was created using granite weathering soil, and the resulting water ratio(water pressure, water) changes were measured at different rainfall conditions of 200mm/hr and 400mm/hr. Laser sensors and vibration sensors were applied to analyze the surface displacement, and the displacement time were compared with each other by video analysis. Experiments have shown that higher rainfall intensity takes shorter time to reach the limit, and increase in the pore water pressure takes shorter time as well. Although the landslide model test does not fully reflect the site conditions, measurements of the time of detection of displacement generation using vibration sensors show that the timing of collapse is faster than the method using laser sensors. If ground displacement measurements using sensors are continuously carried out in preparation for landslides, it is considered highly likely to be utilized as basic data for predicting slope collapse, reducing damage, and activating the measurement industry.

Study on Design of Advanced Smart Postural Change Device for Supine Posture Control (와상체위제어를 위한 스마트 고기능 자세변환기의 설계에 관한 연구)

  • Park, Seung Hwan;Jung, Jin Taek;Sim, Woo Jung;Kim, Yung Sear
    • 재활복지
    • /
    • v.18 no.4
    • /
    • pp.221-235
    • /
    • 2014
  • Recently, the frequency of stroke disease is increased due to the rapid aging population, and is contributed to the major occurrence factors of the posteriori acquired disability. This study is about an postural change device for the control of supine posture which is an assisted equipment using in daily rehabilitation process for overcoming the disability by the aftereffects of the stoke disease. In this paper, the existing domestic and Japan postural appliances is examined and its comparison and categorization is performed according to its functions and purposes. Here, in order to control the supine posture state, the design method for advanced multi functional system is proposed, which is devised to have an unified mattress control operations of combining the bedsore prevention tube with the supine posture tilting tube. And also, in addition of an smart function, it is designed to enable to perform an RF functions such as the monitoring of the present device state, the alteration of the basic position and the control of alternative floating and supine posture. This system control hardware consists of three main parts : the sensor detection part, the motor driving /control part, and the system control part for bluetooth communication. In results, we confirmed that the system designed by this research is possible to make it practical as an advanced smart postural change device combined by IoT technology in the application field of the recent IT technology.

Investigation of the Molecular Diagnostic Market in Animals (동물 분자 진단 시장의 동향)

  • Park, Chang-Eun;Park, Sung-Ha
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.1
    • /
    • pp.26-33
    • /
    • 2019
  • Recently, the rapid growth of the companion animal market has led to the development of animal disease diagnosis kits. Therefore, the utility of the introduction of biomarkers for the development of animal molecular diagnostics is being reevaluated. A good biomarker should be precise and reliable, distinguish between normal and diseased states, and differentiate between different diseases. Recently reported genetic markers, tumor markers (cell free DNA, circulating tumor cells, granzyme, and skin tumors), and others (brucellosis, programmed death recovery-1, symmetric dimethylarginine, periostin, and cysteinyl leukotrien) have been developed. The biomarkers are used for risk prediction or for the screening, diagnosis, and monitoring of disease progression. The most important criteria for related biomarkers are disease specificity. Many potential biomarkers have emerged from laboratory and test studies, but they have not been validated in independent or large-scale clinical studies. Candidate biomarkers evaluate disease associations, verify the effectiveness of biomarkers for early detection and disease progression, and incorporate them into humans and animals. In the future, it will be necessary to reevaluate the utility of well-structured biomarker-based research and study the development of kits that can be used in on-site tests in accordance with the trends introduced in the diagnosis of animal diseases.

Remote Monitoring Panel and Control System for Chemical, Biological and Radiological Facilities (화생방 방호시설을 위한 원격감시 패널 및 제어시스템)

  • Park, Hyoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.464-469
    • /
    • 2019
  • A remote monitoring panel and control system was developed to control various valves and access control chambers, including gas shutoff valves used in CBR(Chemical, Biological and Radiological) facilities. The remote monitoring panel consisted of a main panel installed in the NBC (Nuclear, Biological and Chemical) control room and auxiliary panel installed in the clean room, and the size was divided into pure control and control including CCTV. This system can be monitored and controlled remotely according to the situation where an explosion door and gas barrier door can occur during war and during normal times. This system is divided into normal mode and war mode. In particular, it periodically senses the operation status of various valves, sensors, and filters in the CBR facilities to determine if each apparatus and equipment is in normal operation, and remotely alerts situation workers when repair or replacement is necessary. Damage due to the abnormal operation of each device in the situation can be prevented. This enables control of the blower, supply and exhaust damper, emergency generator, and coolant pump according to the state of shutoff valve and positive pressure valve in the occurrence of NBC, and prevents damage caused by abrupt inflow of conventional weapons and nuclear explosions.