• Title/Summary/Keyword: designing the structure model

Search Result 315, Processing Time 0.026 seconds

Development of a Graphic Simulation Modeller for Robot Welding Process Planning (로보트 용접 공정 계획을 위한 Graphic Simulation Modeller의 개발)

  • Choe, Byeong-Gyu;Jeong, Jae-Yun;Kim, Dong-Won
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.11 no.1
    • /
    • pp.21-32
    • /
    • 1985
  • Presented in this paper is a procedure of developing graphical simulation software for planning robot welding processes. Welding is by far the highest application area for industrial robots, and it has been in great need of such a simulator in designing robot work cells, in justifying the economics of robot welding and in planning robotized welding operations. The model of a robot welding cell consists of four components: They are an welding structure which is a collection of plates to be welded, a positioner to hold the welding structure, a robot with a weld torch, and a set of welding lines (in case of arc welding). Welding structure is modeled by using the reference plane concept and is represented as boundary file which is widely used in solid modeling. Robot itself is modeled as a kinematic linkage system. Also included in the model are such technical constraints as weaving patterns and inclination allowances for each weld joint type. An interactive means is provided to input the welding structure and welding lines on a graphics terminal. Upon completion of input, the program displays the welding structure and welding lines and calculates the center of mass which is used in determining positioner configurations. For a given positioner and robot configuration, the welding line segments that can be covered by the robot are identified, enabling to calculate the robot weld ratio and cycle time. The program is written in FORTRAN for a VAX computer with a Tektronix 4114 graphic terminal.

  • PDF

The Validation of Spreading Activation Model as Evaluation Methodology of Menu Structure: Eye Tracking Approach (메뉴 구조의 평가 방법론으로서 활성화 확산 모델의 타당성 검증: Eye-Tracking 접근 방법)

  • Park, Jong-Soon;Myung, Ro-Hae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.103-112
    • /
    • 2007
  • This study was designed to validate Spreading Activation Theory (SAT) for an evaluation methodology for menu structure through Eye-Tracking approach. When a visual search is on the way, more eye fixations and time are necessary to visually process complex and vague area. From the aspect of recognition, well-designed menu structures were hypothesized to have fewer numbers of fixations and shorter duration because well-designed menu structures reflecting the users' mental model would be well matched with the product's menu structure, resulting in reducing the number of fixations and duration time. The results show that the shorter reaction times for SAT had significantly fewer numbers of fixation and shorter duration time as the hypothesis for this study stated. In conclusion, SAT was proved to be an effective evaluation methodology for menu structure with the eye tracking equipment. In addition, using SAT instead of the real performance experiment would be useful for designing user-centered systems and convenient information structures because SAT was proven to be the theoretical background for design and evaluation of menu structures.

Factor Analysis and Content Development of Digital Text Structure for Designing Visual Experience in e-Book Interface (e-Book 인터페이스에서 시각적 경험 설계를 위한 디지털 텍스트 구조의 물리적 요인분석 및 콘텐츠 개발)

  • Sung, Eun-Mo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.11
    • /
    • pp.79-90
    • /
    • 2011
  • The purpose of this study is to explore physical factor of digital text structure for designing e-Book interface and to develop prototype of e-Book interface by applied these factors. To address this goal, explore factor analysis and confirmatory factor analysis were employed, 237 university students were the participated in this study. According to a result, 29 items for physical feature of digital text structure were developed, 9 factors of digital text structure were also extracted; volume, depth, density, space, layout, format, signal, size, and length. Besides, to identify structure of pre-defined 9 factors, confirmatory factor analysis was conducted. As a result of CFA, the factor structure was supported by all of model fit indices.

Virtual Models for 3D Printing

  • Haeseong Jee
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • surface texture denotes set of tiny repetitive geometric features on an object surface. 3D Printing can readily create a surface of controlled macro-textures of high geometric complexity. Designing surface textures for 3D Printing, however, is difficult due to complex macro-structure of the tiny texture geometry since it needs to be compatible with the non-traditioal manufacturing method. In this paper we propose a visual simulation technique involving development of a virtual model-an intermediate geometric model-of the surface texture design prior to fabricating the physical model. Careful examination of the virtual model before the actual fabrication can help minimize unwanted design iterations. The proposed technique demonstrated visualization capability by comparing the virtual model with the physical model for several test cases.

  • PDF

Electromagnetic Wave Propagation in Anisotropic Composite Structures (이방성 복합재료의 전자기파 투과특성)

  • 전흥재;신현수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.407-414
    • /
    • 2002
  • The knowledge of interaction of electromagnetic waves in composite structures is important for designing the shielding structure for antenna such as radome. Recently, radomes are constructed in the form of foam core sandwich structures that have many mechanical advantages such as high strength, long fatigue life, low density and adaptability to the intended function of structure. However, the propagation of electromagnetic waves is affected by high anisotropic permeability and loss tangent of the composite skin. In this study, the analytical model to understand the propagation of electromagnetic waves in the anisotropic composites and foam core sandwich structures with composite skins was proposed. Numerical analyses of unidirectional composites and foam core sandwich structure as a function of incident angle were performed. From the results of analysis, the general tendencies of transmittance of electromagnetic wave through composites and foam core sandwich structure were obtained.

  • PDF

Probability Analysis of Plane Strain Element using Boundary Element Method (경계요소법을 이용한 평면변형율요소의 확률해석)

  • Jeon, Jeong-Bae;Yoon, Seong-Soo;Park, Jin-Seon;Lee, Hyeong-Ryeol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.39-46
    • /
    • 2012
  • The objectives of this study is intended to analyze stresses using the boundary element method and probability analysis for agricultural structure. Loads and material properties are an important factor when analyzing the structure. Until now, designing structure, loads and material properties are applied deterministic value. However, load and material properties involve uncertainties due to those change probabilistic and deterministic methods could not consider uncertainties. To solve these problems, the reliability analysis based on probability properties scheme was developed. Reliability analysis is easy to approach to analysis frame structure, however it has limitation when solving plane stress strain problems a kind of agricultural structures. The BEM (Boundary Element Method) is able to analysis plane strain problems by boundary conditions. Thus, this study applied boundary element method to analysis plane strain problem, load and material properties as a probabilistic value to calculate the analytical model using Monte Carlo simulations were developed.

Analysis and optimal design of fiber-reinforced composite structures: sail against the wind

  • Nascimbene, R.
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.541-560
    • /
    • 2013
  • The aim of the paper is to use optimization and advanced numerical computation of a sail fiber-reinforced composite model to increase the performance of a yacht under wind action. Designing a composite-shell system against the wind is a very complex problem, which only in the last two decades has been approached by advanced modeling, optimization and computer fluid dynamics (CFDs) based methods. A sail is a tensile structure hoisted on the rig of a yacht, inflated by wind pressure. Our objective is the multiple criteria optimization of a sail, the engine of a yacht, in order to obtain the maximum thrust force for a given load distribution. We will compute the best possible yarn thickness orientation and distribution in order to minimize the total fiber volume with some displacement constraints and in order to leave the most uniform stress distribution over the whole structure. In this paper our attention will be focused on computer simulation, modeling and optimization of a sail-shape mathematical model in different regatta and wind conditions, with the purpose of improving maneuverability and speed made good.

Factory simulation based on shipbuilding CIM

  • Nomoto, Toshiharu
    • Proceedings of the KWS Conference
    • /
    • 1998.10a
    • /
    • pp.3-8
    • /
    • 1998
  • This paper considers factory simulation based on shipbuilding CIM in which a computer integrated design and manufacturing system is considered. The author proposes the product model and several alterative functions for designing ship's structure, and develop a ship definition system for computer integrated design and manufacturing. This implemented system is called SODAS (System Of Design and Assembly for Shipbuilding). Object oriented concept is used to develop this system. As well as the product model, the design function cutting function, and virtual assembling function are introduced. By using the design function, any type of ship's structure can be designed. And also factory simulation can be carried out by using the cutting function and virtual assembling function.

  • PDF

Designing a Deployment Structural Model of Product Concept in Seeds Type R&D Projects (시즈형 R&D과제군의 기술컨셉 전개모형의 설계)

  • Choe Su-Min;Park Jun-Ho;Gwon Cheol-Sin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.490-493
    • /
    • 2004
  • The purpose of this study is to construct technology product concept a deployment model on seeds type R&D projects. For this purpose, we have peformed the following studies : First, technology opportunities and market opportunities through ${\ulcorner}$perception analysis${\lrcorner}$ are captured by perceptional structure of technology experts and customers on the existing technologies and products. Second, the optimal technology product concept deployed by ${\ulcorner}$SAT(System Alternatives Tree)${\lrcorner}$ has been constructed by the ${\ulcorner}$PWBS(Project work Breakdown structure)${\lrcorner}$.

  • PDF

LMI Parameterization of Lineny Sliding Surfaces for Mismatched Uncertain Systems (정합조건을 만족시키지 않는 불확실한 시스템을 위한 선형 슬라이딩 평면의 LMI 매개변수화)

  • Lee, Jae-Kwan;Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.907-912
    • /
    • 2005
  • In this paper, we consider the problem of designing sliding surfaces fur a class of dynamic systems with mismatched uncertainties in the state space model. In terms of LMIs, we give necessary and sufficient conditions fir the existence of a linear sliding surface such that the reduced order sliding mode dynamics is asymptotically stable and completely independent of uncertainties. We parameterize all such linear sliding surfaces by using the solution to the given LMI conditions. And, we consider the problem of designing linear sliding surfaces guaranteeing pole placement constraints or $H_2/H_infty$ performances. Finally, we give a design example in order to show the effectiveness of our method.