• Title/Summary/Keyword: designing fields

Search Result 260, Processing Time 0.043 seconds

Mathematical Optimization Models for Determination of Optimal Vertical Alignment (종단선형설계 최적화 기법에 관한 연구)

  • 강성철;전경수;박영부
    • Journal of Korean Society of Transportation
    • /
    • v.12 no.3
    • /
    • pp.5-13
    • /
    • 1994
  • In the fields of rail and road design, most vertical alignment design have been thus far heavily dependent upon trial-and-errors of experienced engineers. However, it has long been inefficient in productivity of designing process. In order to overcome this inefficiency, this paper presents the optimal vertical alignment design method using mathematical optimization techniques. For optimization, mathematical model to minimize the construction cost is formulated and the separable programming technique and the Zoutendijk method are introduced to solve it. As result, it is shown that this optimization technique can give efficient solutions to all vertical alignment design fields with properly-estimated cost function.

  • PDF

The Effect of Scale Parameter in Designing Reliability Demonstration Test for Lognormal Lifetime Distribution (대수정규 수명분포를 갖는 제품에 대한 신뢰성 입증시험에서 척도모수의 영향분석)

  • Kwon, Young Il
    • Journal of Applied Reliability
    • /
    • v.14 no.1
    • /
    • pp.53-57
    • /
    • 2014
  • In the fields of reliability application, the most commonly used test methods for reliability demonstration are zero-failure acceptance tests since they require fewer test samples and less test time compared to other test methods that guarantee the same reliability with a given confidence level. For products with lognormal lifetime distribution, the value of scale parameter is usually assumed to be known in designing reliability demonstration tests. It is important to select correct values of scale parameters to guarantee the specified reliability with given confidence level exactly. The effect of using wrong values of scale parameters in designing reliability demonstration test for products with lognormal lifetime distribution is examined and selecting proper values of scale parameters for conservative reliability demonstration is discussed.

The Effect of Shape Parameters in Designing Reliability Qualification Test for Weibull lifetime distribution (와이불수명분포를 갖는 제품의 신뢰성인증시험에서 형상모수의 영향분석)

  • Kwon, Young-Il
    • Journal of Applied Reliability
    • /
    • v.11 no.3
    • /
    • pp.225-234
    • /
    • 2011
  • In the fields of reliability application, the most commonly used test methods for reliability qualification are zero-failure acceptance tests since they require fewer test samples and less test time compared to other test methods that guarantee the same reliability with a given confidence level. Usually values of shape parameters are assumed to be known in designing reliability qualification tests for Weibull lifetime distribution. It is important to select correct values of shape parameters to guarantee the specified reliability with given confidence level exactly. The effect of using wrong values of shape parameters in designing reliability qualification test for products with Weibull lifetime distribution is examined and selecting proper values of shape parameters for conservative reliability qualification is discussed.

Reconstruction of wind speed fields in mountainous areas using a full convolutional neural network

  • Ruifang Shen;Bo Li;Ke Li;Bowen Yan;Yuanzhao Zhang
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.231-244
    • /
    • 2024
  • As wind farms expand into low wind speed areas, an increasing number are being established in mountainous regions. To fully utilize wind energy resources, it is essential to understand the details of mountain flow fields. Reconstructing the wind speed field in complex terrain is crucial for planning, designing, operation of wind farms, which impacts the wind farm's profits throughout its life cycle. Currently, wind speed reconstruction is primarily achieved through physical and machine learning methods. However, physical methods often require significant computational costs. Therefore, we propose a Full Convolutional Neural Network (FCNN)-based reconstruction method for mountain wind velocity fields to evaluate wind resources more accurately and efficiently. This method establishes the mapping relation between terrain, wind angle, height, and corresponding velocity fields of three velocity components within a specific terrain range. Guided by this mapping relation, wind velocity fields of three components at different terrains, wind angles, and heights can be generated. The effectiveness of this method was demonstrated by reconstructing the wind speed field of complex terrain in Beijing.

Airlift Bioreactors (Airlift 생물반응기)

  • 류희옥;장용근김상돈
    • KSBB Journal
    • /
    • v.9 no.4
    • /
    • pp.347-364
    • /
    • 1994
  • Airlift bioreactors are extensively used in the fields of aerobic fermentation, animal and plant cell cultures. This review article evaluates the present research activities in the field of airlift bioreactors. The published research works on the design parameters such as types, location and properties of gas sparser, hydrodynamic properties such as phase holdups mixing, liquid circulation rate, mass and heat transfer rates are summarized. Also, recommendations are presented for designing airlift bioreactors.

  • PDF

Sensor Deployment Simulator for Designing Sensor Fields (센서 필드 설계를 위한 배치 시뮬레이터)

  • Kwon, Oh-Heum;Song, Ha-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.3
    • /
    • pp.354-365
    • /
    • 2013
  • Node deployment is one of the important problems in achieving good quality of service in wireless sensor network. The purpose of this paper is to develop an interactive system that supports user's decision makings in designing sensor fields. The system provides grid-based initial deployment algorithm supporting three types of node deployment pattern, area-fill, path-cover, and barrier-cover deployment pattern. After initial deployment, an iterative refinement algorithm can be applied, which takes care of the irregularity of the deployment area and the heterogeneity of sensors. The proposed system helps users to effectively deploy nodes in the sensor field, analyse the detection performance of the deployment, and perform network simulations. The developed system can be utilized as a part of the development environment of the surveillance sensor network system.

Selection of the Strategic R&D Field Satisfying SMEs' Specific Needs by Technology Relevance/Cluster Analysis (기술연관분석을 통한 중소기업형 전략적 기술개발과제의 우선순위 도출)

  • 고병열;홍정진;손종구;박영서
    • Journal of Korea Technology Innovation Society
    • /
    • v.6 no.3
    • /
    • pp.373-390
    • /
    • 2003
  • With limited resources, proper allocation of the national R&D budget is very crucial matter for reinforcing the national competence, and the importance of selecting strategic R&D fields have been increasingly emphasized by technology policy-makers and CTOs. This paper deals with technology relevance/cluster analysis, which measures technological dependency and relevancy among technologies, and how it can be used for selecting the strategic R&D fields especially satisfying SMEs(small and medium enterprises)' specific needs. As a result of this study, technology-product tree composed of 7 major technology fields, 22 clusters, 41 groups, 335 core-need technologies and hundreds of related business items are produced that can be used for designing SMEs' R&D/business portfolio as well as R&D investment decision-making of the Ministry of Small and Medium Business Administration.

  • PDF

A Study on Comparative Estimate with Development of Reliability Estimation Model in Applicable of Field to Existing Model Using Error Occurrence Density Function (오류발생밀도함수를 이용한 현장 적용형 신뢰성 평가모형 개발과 기존 모형과의 비교평가에 관한 연구)

  • Kim, Suk-Hee;Kim, Jong-Hun;Shinn, Seong-Whan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.2
    • /
    • pp.63-71
    • /
    • 2010
  • The existing reliability evaluation models which have already developed by the corporations are so various because of using Maximum Likelihood Method. The existing models are very complicated owing to using system designing methods. Therefore, it is very difficult to utilize the existing models in business fields of many corporations. The purposes of this paper are as follows: The first purpose is to study the simple estimated Parameter to be easily utilized in the business fields of the corporations. The second purpose is to testify the simplification of the developed Parameter of estimated method by comparing the developed reliability evaluation model with the existing reliability evaluation models which are used in the business fields of the corporations.

Visual Fields Reflecting Effects of Target Size, Color and Meridian in Visual Tasks (시각작업의 설계와 평가를 위한 표적의 크기, 색과 위치에 따른 시각영역)

  • Kee, Do-Hyung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.2
    • /
    • pp.190-196
    • /
    • 2001
  • This study aims to develop three types of the visual fields: stationary field, eye field, and head field, which are classified depending upon the eye and head movements. A visual experiment taking target size, target color, and meridian into account was conducted, in which the L32 orthogonal array was employed. The results showed that target size and meridian were significant at ${\alpha}$=0.01 in all three visual fields. Contrary to expectation, target color was significant at ${\alpha}$=0.10 only in the head field. Furthermore, the differences in size of the head field depending upon four target colors were negligibly small. Three linear regression models were provided to generate visual fields which are appropriate for given visual task's characteristics. In addition, a simple method using adjusting factor was also proposed so that anyone without knowledge for human factors/ergonomics can easily generate and use them when designing or evaluating visual tasks. It is expected that the visual fields presented in this study can be easily used even by non-ergonomic experts in real situations due to their simplicity.

  • PDF

A study of gifted students's mathematical process of thinking by connecting algebraic expression and design activities (대수식과 디자인의 연결과정에서의 영재학생들의 수학적 사고 과정 분석)

  • Kwon, Oh-Nam;Jung, Sun-A
    • The Mathematical Education
    • /
    • v.51 no.1
    • /
    • pp.47-61
    • /
    • 2012
  • Students can infer mathematical principles in a very natural way by connecting mutual relations between mathematical fields. These process can be revealed by taking tasks that can derive mathematical connections. The task of this study is to make expression and design it and derive mathematical principles from the design. This study classifies the mathematical field of expression for design and analyzes mathematical thinking process by connecting mathematical fields. To complete this study, 40 gifted students from 5 to 8 grade were divided into two classes and given 4 hours of instruction. This study analyzes their personal worksheets and e-mail interview. The students make expressions using a functional formula, remainder and figure. While investing mathematical principles, they generalized design by mathematical guesses, generalized principles by inference and accurized concept and design rules. This study proposes the class that can give the chance to infer mathematical principles by connecting mathematical fields by designing.