• Title/Summary/Keyword: design to Eurocodes

Search Result 18, Processing Time 0.019 seconds

The significance of removing shear walls in existing low-rise RC frame buildings - Sustainable approach

  • Keihani, Reza;Bahadori-Jahromi, Ali;Goodchild, Charles
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.563-576
    • /
    • 2019
  • According to The Concrete Centre, in the UK shear walls have become an inseparable part of almost every reinforced concrete frame building. Recently, the construction industry has questioned the need for shear walls in low to mid-rise RC frame buildings. This study tried to address the issue in two stages: The first stage, the feasibility of removing shear walls in an existing design for a residential building where ETABS and CONCEPT software were used to investigate the structural performance and cost-effectiveness respectively. The second stage, the same structure was examined in various locations in the UK to investigate regional effects. This study demonstrated that the building without shear wall could provide adequate serviceability and strength within the safe range defined by Eurocodes. As a result, construction time, overall cost and required concrete volume are reduced which in turn enhance the sustainability of concrete construction.

Machine learning-based probabilistic predictions of shear resistance of welded studs in deck slab ribs transverse to beams

  • Vitaliy V. Degtyarev;Stephen J. Hicks
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.109-123
    • /
    • 2023
  • Headed studs welded to steel beams and embedded within the concrete of deck slabs are vital components of modern composite floor systems, where safety and economy depend on the accurate predictions of the stud shear resistance. The multitude of existing deck profiles and the complex behavior of studs in deck slab ribs makes developing accurate and reliable mechanical or empirical design models challenging. The paper addresses this issue by presenting a machine learning (ML) model developed from the natural gradient boosting (NGBoost) algorithm capable of producing probabilistic predictions and a database of 464 push-out tests, which is considerably larger than the databases used for developing existing design models. The proposed model outperforms models based on other ML algorithms and existing descriptive equations, including those in EC4 and AISC 360, while offering probabilistic predictions unavailable from other models and producing higher shear resistances for many cases. The present study also showed that the stud shear resistance is insensitive to the concrete elastic modulus, stud welding type, location of slab reinforcement, and other parameters considered important by existing models. The NGBoost model was interpreted by evaluating the feature importance and dependence determined with the SHapley Additive exPlanations (SHAP) method. The model was calibrated via reliability analyses in accordance with the Eurocodes to ensure that its predictions meet the required reliability level and facilitate its use in design. An interactive open-source web application was created and deployed to the cloud to allow for convenient and rapid stud shear resistance predictions with the developed model.

Design models for predicting the resistance of headed studs in profiled sheeting

  • Vigneri, Valentino;Hicks, Stephen J.;Taras, Andreas;Odenbreit, Christoph
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.633-647
    • /
    • 2022
  • This paper presents the results from reliability analyses of the current Eurocode 4 (EN 1994-1-1) and AISC 360-16 design models for predicting the resistance of headed stud shear connectors within profiled steel sheeting, when the ribs are oriented transverse to the supporting beam. For comparison purposes, the performance of the alternative "Luxembourg" and "Stuttgart" model were also considered. From an initial database of 611 push-out tests, 269 cases were included in the study, which ensured that the results were valid over a wide range of geometrical and material properties. It was found that the current EN 1994-1-1 design rules deliver a corrected partial safety factor γM* of around 2.0, which is significantly higher than the target value 1.25. Moreover, 179 tests fell within the domain of the concrete-related failure design equation. Notwithstanding this, the EN 1994-1-1 equations provide satisfactory results for re-entrant profiled sheeting. The AISC 360-16 design equation for steel failure covers 263 of the tests in the database and delivers 𝛾M*≈2.0. Conversely, whilst the alternative "Stuttgart" model provides an improvement over the current codes, only a corrected partial safety factor of 𝛾M*=1.47 is achieved. Finally, the alternative "Luxembourg" design model was found to deliver the required target value, with a corrected partial safety factor 𝛾M* between 1.21 and 1.28. Given the fact that the Luxembourg design model is the only model that achieved the target values required by EN 1990, it is recommended as a potential candidate for inclusion within the second generation of Eurocodes.

A Study on the Post-buckling Behaviour of Single-layer Domes exposed to Fire (화재에 노출된 단층 돔의 후좌굴 거동에 관한 연구)

  • Lee, Sang-Jin;Bae, Jungeun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.139-148
    • /
    • 2019
  • The lightweight structures such as domes are particularly vulnerable when it has been subjected to high temperature induced by the fire. It is therefore crucial to predict the possible instability path of structures exposed to the fire in structural design process. In this study, the instabilities of single-layer domes is investigated by using finite element technologies with the consideration of high temperature. The material properties of members under high temperature are considered by using the reduction factors which is provided in Eurocodes 3. Some damage patterns are assumed with use of a structural unit which is symmetric in radial direction. For numerical evaluations, the geometrically nonlinear truss element is implemented and the arch-length control method is employed to trace the post-buckling behaviour of domes. From numerical results, it is found to be that a significant change of post-buckling behaviour is detected in dome structures when structural members are exposed to the fire.

Analysis of demountable steel and composite frames with semi-rigid bolted joints

  • Wang, Jia;Uy, Brian;Li, Dongxu
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.363-380
    • /
    • 2018
  • This paper presented an integral design procedure for demountable bolted composite frames with semi-rigid joints. Moment-rotation relationships of beam-to-column joints were predicted with analytical models aiming to provide accurate and reliable analytical solutions. Among this, initial stiffness of beam-to-column joints was derived on the basis of Timoshenko's plate theory, and moment capacity was derived in accordance with Eurocodes. The predictions were validated with relevant test results prior to further applications. Frame analysis was conducted by using Abaqus software with material and geometrical nonlinearity considered. Variable lateral loads incorporating wind actions and earthquake actions in accordance with Australian Standards were adopted to evaluate the flexural behaviour of the composite frames. Strength and serviceability limit state criteria were utilized to verify configurations of designed models. A wide range of frames with the varied number of storeys and bays were thereafter programmed to ascertain bending moment envelopes under various load combinations. The analytical results suggest that the proposed approach is capable of predicting the moment-rotation performance of the semi-rigid joints reasonably well. Outcomes of the frame analysis indicate that the load combination with dead loads and live loads only leads to maximum sagging and hogging moment magnitudes in beams. As for lateral loads, wind actions are more crucial to dominate the design of the demountable composite frames than earthquake actions. No hogging moment reversal is expected in the composite beams given that the frames are designed properly. The proposed analysis procedure is demonstrated to be a simple and efficient method, which can be applied into engineering practice.

Numerical Simulation on Disproportionate Collapse of the Tall Glulam Building under Fire Conditions

  • Zhao, Xuan;Zhang, Binsheng;Kilpatrick, Tony;Sanderson, Iain
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.311-321
    • /
    • 2021
  • Perception of the public to structural fires is very important because there are only a number of tall timber buildings constructed in the world. People are hesitating to accept tall timber buildings, so it is essential to ensure the first generation of tall timber buildings to a very high standard, especially fire safety. Right now, there are no specific design standards or regulations for fire design of tall timber buildings in Europe. Even though heavy timber members have better fire resistance than steel components, many conditions still need to be verified before considering the use of timber materials, e.g. fire spread, post-fire collapse, etc. This research numerically explores the structural behaviours of a tall Glulam building when one of its internal Glulam (Glued laminated timber) columns fails after sustaining a full 120-min standard fire and is removed from the established finite element building model created in SAP2000. The numerical results demonstrate that the failure and removal of the selected internal Glulam column may lead to the local failure of the adjacent CLT (Cross laminated timber) floor slabs, but will not lead to large disproportionate damage and collapse of the whole building. Here, the building is assumed to be located in Glasgow, Scotland, UK.

Temperature distribution in a full-scale steel framed building subject to a natural fire

  • Wald, Frantisek;Chladna, Magdalena;Moore, David;Santiago, Aldina;Lennon, Tom
    • Steel and Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.159-182
    • /
    • 2006
  • Current fire design codes for determining the temperature within the structural elements that form part of a complete building are based on isolated member tests subjected to the standard fire. However, the standard time-temperature response bears little relation to real fires and doesn't include the effects of differing ventilation conditions or the influence of the thermal properties of compartment linings. The degree to which temperature uniformity is present in real compartments is not addressed and direct flame impingement may also have an influence, which is not considered. It is clear that the complex thermal environmental that occurs within a real building subject to a natural fire can only be addressed using realistic full-scale tests. To study global structural and thermal behaviour, a research project was conducted on the eight storey steel frame building at the Building Research Establishment's Cardington laboratory. The fire compartment was 11 m long by 7 m wide. A fire load of $40kg/m^2$ was applied together with 100% of the permanent actions and variable permanent actions and 56% of live actions. This paper summarises the experimental programme and presents the time-temperature development in the fire compartment and in the main supporting structural elements. Comparisons are also made between the test results and the temperatures predicted by the structural fire Eurocodes.

Experimental Study on Steel Beam with Embossment Web (엠보싱 웨브를 가지는 보 부재의 실험적 연구)

  • Park, Han-Min;Lee, Hee-Du;Shin, Kyung-Jae;Lee, Swoo-Heon;Chae, Il Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.479-486
    • /
    • 2017
  • Steel beams with corrugated web have been widely used in the steel structures. However, it is challenging to weld the section between the corrugated web and the flange straight, which increases the cost of production. In order to solve this issue, steel beam with intaglio and embossed web (It is called an IEB) was invented. A web with embossment is produced by cold pressing and welded to flange by automatic welding machine. The loading tests were conducted to investigate the load-carrying capacity of IEB, and its test result was compared with that of H-shaped beam having a same size of flange and web. The test results of IEB series showed about 40% higher load capacities than H-shaped series. As a result of comparing the IEB specimen with Eurocodes for steel beams with corrugated web, all of specimens tested in this study did not meet the design value. Therefore, it is difficult to apply existing formula to IEB and new design formula should be presented for field application.