• 제목/요약/키워드: design of the experiments

검색결과 6,465건 처리시간 0.043초

신경망과 실험계획법을 이용한 열간 단조품의 공정설계 (Process Design of a Hot Forged Product Using the Artificial Neural Network and the Statistical Design of Experiments)

  • 김동환;김동진;김호관;김병민;최재찬
    • 한국정밀공학회지
    • /
    • 제15권9호
    • /
    • pp.15-24
    • /
    • 1998
  • In this research. we have proposed a new technique to determine .the combination of design parameters for the process design of a hot forged product using artificial neural network(ANN) and statistical design of experiments(DOE). The investigated problem involves the adequate selection of the aspect ratio of billet, the ram velocity and the friction factor as design parameters. An optimal billet satisfying the forming limitation, die filling, load and energy as well as more uniform distribution of effective strain, is determined by applying the ability of artificial neural network and considering the analysis of mean and variation on the functional requirement. This methodology will be helpful in designing and controlling parameters on the shop floor which would yield the best design solution.

  • PDF

직교배열표를 이용한 이산공간에서의 최적화 알고리듬 개발 (Development of an Optimization Algorithm Using Orthogonal Arrays in Discrete Design Space)

  • 이정욱;박준성;이권희;박경진
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1621-1626
    • /
    • 2001
  • The structural optimization have been carried out in the continuous design space or in the discrete design space. Methods fur discrete variables such as genetic algorithms , are extremely expensive in computational cost. In this research, an iterative optimization algorithm using orthogonal arrays is developed for design in discrete space. An orthogonal array is selected on a discrete des inn space and levels are selected from candidate values. Matrix experiments with the orthogonal array are conducted. New results of matrix experiments are obtained with penalty functions leer constraints. A new design is determined from analysis of means(ANOM). An orthogonal array is defined around the new values and matrix experiments are conducted. The final optimum design is found from iterative process. The suggested algorithm has been applied to various problems such as truss and frame type structures. The results are compared with those from a genetic algorithm and discussed.

실험계획법을 이용한 대형트럭 조종성 향상을 위한 설계인자 최적조합에 관한 연구 (A Study on Optimal Combination of Design Parameters for Improving Handling Performance of a Large Truck Using Design of Experiments)

  • 문일동;이동환;오재윤
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.799-806
    • /
    • 2004
  • This paper presents a scheme for finding an optimal combination of design parameters affecting on the handling performance of a large truck using design of experiments. The average of the sum of peak-to-peak roll angles at the first and second part of the double lane is used as an objective function for design of experiments. Six design parameters are selected from all possible parameters affecting on the handling performance. The table of orthogonal arrays is made by 27 times simulations. A computational model of a large truck is developed by MSC/NASTRAN and MSC/ADAMS, and verified the reliability of it with the results of vehicle tests performed in a double lane change course. It is used for the simulations. Analyses of variance and factor effect of the table of orthogonal arrays are performed. This paper proposes an optimal combination of those six design parameters for improving the handling performance of the large truck.

수리모형실험을 활용한 댐 방류관 설계의 적정성 검토 (The Propriety of Design Outlet Conduit of Dam by Hydraulic Model Experiments)

  • 최병규;강태호;정요한
    • 한국수자원학회논문집
    • /
    • 제36권5호
    • /
    • pp.811-821
    • /
    • 2003
  • 본 연구에서는 수리모형실험을 실시하여 방류관의 흐름특성을 분석 방류관 설계의 적정성을 검토하는데 있다. 수리모형실험 결과 기본계획의 방류관 통수능은 과소설계 되었고, 이를 토대로 설계 변경한 기본설계의 방류관 통수능 설계치는 실험치와 거의 일치하여 적절하게 설계되었음을 알 수 있었다. 또한 방류관 부압발생 여부 및 종단형상의 적정성을 검토한 결과 허용치 이내 값이 발생되어 적절한 것으로 판명되었다. 이러한 과정을 토대로 기본설계의 방류관 규모 및 위치가 적절하였음이 검토되었다.

실험계획법을 이용한 SUV의 보행자 보호 시스템 설계 (Pedestrian Protection System Design for SUV Using the Design of Experiments)

  • 이영명;최원석;박경진
    • 한국자동차공학회논문집
    • /
    • 제24권1호
    • /
    • pp.24-32
    • /
    • 2016
  • The mortality rate of car-pedestrian accidents is quite high, compared to the frequency of accidents. Researches on pedestrian protection are being actively performed worldwide. The A-pillar and lower part of the wind shield cause the most serious damage to the pedestrians. Typical devises to protect the pedestrians are the hood lift system and pedestrian airbag. The design of such devices for an sport utility vehicle is performed based on a design process using design of experiments (DOE). The design results are obtained by an orthogonal array (OA), analysis of mean (ANOM) and analysis of variance (ANOVA). A metamodel is also used in the design process.

실험계획법을 이용한 휠 로더 전 차축의 최적형상에 관한 연구 (A Study on the Optimal Shape Design of Front Axle of Wheel Loader using the Design of Experiments)

  • 유대원;이재학
    • 한국정밀공학회지
    • /
    • 제29권2호
    • /
    • pp.193-200
    • /
    • 2012
  • Wheel loader is one of the construction machinery capable of variety of tasks and the demand on functional diversity and structural reliability is growing. As a study on the optimal shape design of front axle for wheel loader through the design of experiments, this paper assessed the design parameters affecting the maximum stress. As a result, a value of 126.77 MPa of minimum stress was obtained, and optimal factors showed the values of w = 100.0 mm, ${\theta}=40^{\circ}$ and R = 118 mm. It showed an accuracy of 98.7% compared with the structural analysis.

실험계획법과 순차적 반응표면법을 이용한 선형 모터의 다중 목적 형상최적설계 (Multi-Objective Geometric Optimal Design of a Linear Induction Motor Using Design of Experiments and the Sequential Response Surface Method)

  • 류태형;유정훈
    • 대한기계학회논문집A
    • /
    • 제33권8호
    • /
    • pp.726-732
    • /
    • 2009
  • In many industries, the linear motor replaces the existing framework for linear transportation. Similar to other conventional motors, it is important to minimize the ripple of thrust and to maximize the thrust force of the linear motor. Because the two objectives are associated to each other, the multi-objective design process is necessary considering all objectives. This paper intends to optimize geometric parameters of the linear motor with two design objectives using design of experiments and sequential response surface method.

실험계획법을 이용한 연삭가공물의 형상오차 분석 (Geometric Error Analysis of Surface Grinding by Design of Experiments)

  • 지용주;곽재섭;하만경
    • 한국공작기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.1-8
    • /
    • 2004
  • Various controllable parameters of an experiment have influence on grinding process. In order to get good products with a high quality, these parameters should be considered whether each parameter has relations to the quality. This paper describes the use of the design of experiments to minimize geometric error in surface grinding. Controllable parameters for the design of experiments were selected as spindle speed, table speed, depth of cut and grain size. From the experimental results, a degree of influence between these parameters and the geometric error was evaluated. An optimal set of grinding conditions was obtained by means of analysis of variance(ANOVA).

실험계획법에 의한 러버실 금형가공을 위한 총형공구의 최적설계 (Optimal design of formed tool for die of rubber seals using design of experiments)

  • ;임표;이희관;양균의
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.694-697
    • /
    • 2005
  • The design of experiments are used for optimal design of formed tools to machine automobile bearing rubber seal die, which is classified into the high precision rubber mold. The clearance angle, rake angle and the length cutting edge are considered as the factors. The cutting force is selected to be a characteristic value and compared with the mean tool wear and life by repeated experiments. The design of the experiment is based on the repeated one-way factorial design, which finds the significance of the factors and the best level to predict the tool life by using ANOVA and regression.

  • PDF

혼합물 실험계획법을 이용한 이차전지의 최적설계 (An Optimum Design of Secondary Battery using Design of Experiments with Mixture)

  • 김성준;박종인
    • 산업공학
    • /
    • 제18권4호
    • /
    • pp.402-411
    • /
    • 2005
  • Secondary batteries with high performance are essential in widespread use of modern portable devices such as cellular phones and laptop computers. High energy density, long cycle life, and safety are some of important requirements for secondary battery. To achieve such characteristics, a mixing proportion of electrolyte solution ingredients in the battery should be carefully chosen. In this paper, using statistical design of mixture experiments (DOME), we attempt to find an optimum condition of designing the secondary battery. DOME has a distinct feature in that the experimental region is represented by simplex, rather than hypercube, because the sum of blend proportions should be unity. Several designs based upon this point have been proposed for mixture experiments. Among them, an extreme vertices design is employed in this paper because there are a couple of blend constraints to be considered. In order to investigate how the mixing proportion interacts with other manufacturing factors, a fractional factorial design is also included across the extreme vertices design. As a result, we find that the blend proportion of solution ingredients has a significant effect on battery performances. By simultaneously optimizing two battery capacities, this paper proposes an optimum blend proportion according to process factor settings.