• 제목/요약/키워드: design of concrete structures

Search Result 1,965, Processing Time 0.025 seconds

Literature Study on the Durability Design Method of Reinforced Concrete Structure (철근콘크리트 구조물의 내구성 설계수법에 관한 문헌적 연구)

  • 신성우;이한승
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.421-426
    • /
    • 1999
  • The purpose of this study is to investigate the durability design method of reinforced concrete structure in order to establish a rationally combined design system of structural and durability design, that is to say performance-based design. In literature study, the integrated design of concrete structure studied JCI committe is very intensive durability design method for reinforced concrete structure. Specially, B root durability design method for selection of verification level is very effective method in the view of modeling of materials and structural properties to analyze safety and serviceability of RC structures.

  • PDF

Bond-slip effect in steel-concrete composite flexural members: Part 2 - Improvement of shear stud spacing in SCP

  • Lee, WonHo;Kwak, Hyo-Gyoung;Kim, Joung Rae
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.549-557
    • /
    • 2019
  • The use of shear studs usually placed in the form of mechanical shear connectors makes it possible to adopt composite steel-concrete structures in various structures, and steel-concrete plate composite (SCP) is being seriously considered for the installation of storage tanks exposed to harsh environments. However, manufacturing of SCP must be based on the application of existing design guidelines which require very close arrangement of shear studs. This means that the direct application of current design guidelines usually produces very conservative results and close arrangement of shear studs precludes pouring concrete within exterior steel faceplates. In this light, an improved guideline to determine the stud spacing should be introduced, and this paper proposes an improved ratio of the stud spacing to the thickness of steel plate on the basis of numerous parametric studies to evaluate the relative influence of the stud spacing on the stability of the SCP.

ADVANCES IN DESIGN AND RESIDUAL LIFE CALCULATION WITH REGARD TO REBAR CORROSION OF REINFORCED CONCRETE

  • C. Andrade;D. Izquierdo;J. Rodriguez;L Ortega
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.15-30
    • /
    • 2005
  • The increasing amount of structures presenting distress due to reinforcement corrosion is urging the establishment of more accurate calculation methods for the service life of concrete structures. In the present paper, a summary of the different approaches is presented that are able to calculate the expected life of new structures, in certain aggressive environments or the residual life of already corroding structures. The methods for the initiation period are based on the proper calculation of the carbonation front or chloride penetration and on the steel corrosion rate. The methods for the residual load-bearing capacity calculations are based in the use of ' indicators ' or in the evaluation of the reduced section and a structural recalculation.

  • PDF

An Advisory Expert System for the Designer of Reinforced Concrete Structures (철근 콘크리트 구조물 설계자를 위한 전문가 시스템 개발)

  • 정영식;김철환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.372-377
    • /
    • 1995
  • Expert systems which represent the appllication of artificial intelligence research are now nearly 20 years old. It is said that the present technology together with ever- increasing computing applicability of Combined Hypertext-Expert System Techniques to the design of reinforced concrete structures. Hypertext systems allow the user to control the system while expert systems alone don't give the user any control over the system. Therefore the combination of these two techniques, offered by KnowledgePro, may bring us closer to real user-expert communication. The system developed in this work offers information on design in general by reorganizing ACI Manual 318-89, detailed stress analysis and cross sectional design of simple PC/RC beams and optimum design of reinforced concrete building frames. The system also includes the author's earlier work on guidance to identify types of cracks in concrete. It is also includes the author's earlier work on guidance to identify types of cracks in concrete. It is also demonstrated how well and conveniently existing programs can be used by reorganizing the user manuals in the context of hypertext.

  • PDF

A Probability-Based Durability Analysis of Concrete Structures in Chloride Containing Environments (염해환경 콘크리트 구조물의 확률론적 내구성 해석)

  • Kwon, Ki-Jun;Kim, Dong-Baek;Jung, Sang-Hwa;Chae, Seong-Tae
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.3 s.81
    • /
    • pp.51-56
    • /
    • 2007
  • In recent years, many research works have been carried out in order to obtain a more controlled durability and long-term performance of concrete structures in chloride containing environments. In particular, the development of new procedures for probability-based durability analysis/design has proved to be very valuable. Although there is still a lack of relevant data, this approach has been successfully applied to some new concrete structures. In this paper, the equation used for modelling of the chloride penetration was based on Fick's Second Law of Diffusion in combination with a time dependent diffusion coefficient. The probability analysis of the durability performance was performed by use of a Monte Carlo Simulation. The procedure was applied to an example based on limited data gathered in this country. The influences of each parameter on the durability of concrete structures are studied and some comments for durability design are given. The new procedure may be very useful in designing an important concrete structures in chloride containing environments. Also it may help to predict the service life of concrete structures under a given probability of failure.

A Study on the Fire Resistance Design Guidelines for High-Strength Concrete Structures of AIK (대한건축학회의 구조내화설계 가이드라인에 관한 연구)

  • Kwon, Young-Jin;Shin, Yi-Chul;Lee, Jae-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.21-25
    • /
    • 2008
  • It is the aim of this study to investigate the fire resistance design Guidelines for high-strength concrete structure for example compressive strength more than 40Mpa. It is well know that explosive spalling due to fire attack of high strength concrete is related to concrete failure. so, the purpose of this study introduce the fire A Studty on the Fire Resistance Design Guidelines for High-Strength Concrete Structures of AIK for the response of explosive spalling of high strength concrete.

  • PDF

UNIFICATION OF THERMO-PHYSICS OF MATERIALS AND MECHANICS OF STRUCTURES - TOWARD A LIFE SPAN SIMULATOR OF STRUCTURAL CONCRETE -

  • Maekawa, K.;Ishida, T.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.29-46
    • /
    • 1999
  • The performance based design obligates quantitative assessment of required performances by means of transparent and objective science. In this design scheme, simulation of both macro and micro-scale structural behaviors is thought to be a powerful tool. This paper proposes a way how to unify the structural safety and serviceability check method and durability assessment of RC structures. Though component chemical-physical processes are crudely assumed, system dynamics of micro-scale pore structure formation and macro-scale defects and deformation of structures was shown as possible and promising approach in future. The authors understand that the unification of structural and durability design has just started. For further progress and development, predictive tool of structural behaviors from birth to death of concrete under any specified environment and load serves as an essential technicality.

  • PDF

Repid Corrosion Test on Reinforcing Steels in Chloride-Penetrating Concrete Structures with Various Crack Patterns (균열특성에 따른 콘크리트 구조물의 염분침투에 관한 실험적 연구)

  • 이상국;정영수;문홍식;안태송;유환구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.345-350
    • /
    • 2001
  • Reinforced concrete is, in general, known as a high durability material due to a strong alkalinity of cement. Probable concrete cracks could incur steel corrosion of RC structures and then could easily deteriorate the concrete durability, which can be fully secured by a systematic quality control for the construction of concrete structures. For the corrosion protection of reinforcing steels in concrete, however, current design specifications of concrete cover depth do not in-depth consider the effect of the cracks as well as the chloride content of RC structures. Therefore, appropriate provisions for concrete cover depth should be coded by considering the influence of concrete cracks on the corrosion of reinforcing steels. The objective of this research is to investigate pertinent cover depth, which can prohibit rebar corrosion, on the basis of experimental corrosion measurements of reinforcing steels on crack characteristics such as the width, depth and frequency of concrete cracks.

  • PDF

Optimum Design of Reinforced Concrete frames Considering Serviceability (사용성을 고려한 RC뼈대 구조물의 최적설계)

  • 김기대;박성규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.279-286
    • /
    • 2002
  • This study is concerned wiか the practical optimum design of concrete framed structures considering serviceability - deflection, crack, fatigue. The optimizing problems of framed structure are formulated with the objective function and the constraints which take the section properties as the design variables. The objective functions are formulated as the total cost of the structures and the constraints are derived by using the criteria with respect to safety and serviceability based on the part of concrete bridge in the Korea standard code of road bridge. The SLP method is introduced to solve the formulated nonlinear programming problems in this study and tested out through the numerical examples. This developed optimizing algorithm is tested out and examined through the numerical examples for the practical use of design on the concrete framed structures. And their results are compared and analyzed to examine the possibility of optimization, the applicability and the convergency of this algorithm.

  • PDF

Effect of soil in controlling the seismic response of three-dimensional PBPD high-rise concrete structures

  • Mortezaie, Hamid;Rezaie, Freydoon
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.217-227
    • /
    • 2018
  • In the last decades, valuable results have been reported regarding conventional passive, active, semi-active, and hybrid structural control systems on two-dimensional and a few three-dimensional shear buildings. In this research, using a three-dimensional finite element model of high-rise concrete structures, designed by performance based plastic design method, it was attempted to construct a relatively close to reality model of concrete structures equipped with Tuned Mass Damper (TMD) by considering the effect of soil-structure interaction (SSI), torsion effect, hysteresis behavior and cracking effect of concrete. In contrast to previous studies which have focused mainly on linearly designed structures, in this study, using performance-based plastic design (PBPD) design approach, nonlinear behavior of the structures was considered from the beginning of the design stage. Inelastic time history analysis on a detailed model of twenty-story concrete structure was performed under a far-field ground motion record set. The seismic responses of the structure by considering SSI effect are studied by eight main objective functions that are related to the performance of the structure, containing: lateral displacement, acceleration, inter-story drift, plastic energy dissipation, shear force, number of plastic hinges, local plastic energy and rotation of plastic hinges. The tuning problem of TMD based on tuned mass spectra is set by considering five of the eight previously described functions. Results reveal that the structural damage distribution range is retracted and inter-story drift distribution in height of the structure is more uniform. It is strongly suggested to consider the effect of SSI in structural design and analysis.