• Title/Summary/Keyword: design objective

Search Result 6,773, Processing Time 0.033 seconds

Optimum design of a walking tractor handlebar through many-objective optimisation

  • Mahachai, Apichit;Bureerat, Sujin;Pholdee, Nantiwat
    • Advances in Computational Design
    • /
    • v.2 no.4
    • /
    • pp.273-281
    • /
    • 2017
  • In this work, a comparative study of multi-objective meta-heuristics (MOMHs) for optimum design of a walking tractor handlebar is conducted in order to reduce the structural mass and increase structural static and dynamic stiffness. The design problem has objective functions as maximising structural natural frequencies, minimising structural mass, bending deflection and torsional deflection with stress constraints. The problem is classified as a many-objective optimisation since there are more than three objectives. Design variables are structural shape and size. Several well established multi-objective optimisers are employed to solve the proposed many-objective optimisation problems of the walking tractor handlebar. The results are compared whereas optimum design solutions of the walking tractor handlebar are illustrated.

Design Method of Multi-Stage Gear Drive (Volume Minimization and Reliability Improvement) (다단 기어장치의 설계법(체적 감소 및 신뢰성 향상))

  • Park, Jae-Hee;Lee, Joung-Sang;Chong, Tae-Hyong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.36-44
    • /
    • 2007
  • This paper is focused on the optimum design for decreasing volume and increasing reliability of multi-stage gear drive. For the optimization on volume and reliability, multi-objective optimization is used. The genetic algorithm is introduced to multi-objective optimization method and it is used to develop the optimum design program using exterior penalty function method to solve the complicated subject conditions. A 5 staged gear drive(geared motor) is chosen to compare the result of developed optimum design method with the existing design. Each of the volume objective, reliability objective, and volume-reliability multi-objectives are performed and compared with existing design. As a result, optimum solutions are produced, which decrease volume and increase reliability. It is shown that the developed design method is good for multi-stage gear drive design.

Combined Design of Robust Control System and Structure System (강인성 제어 시스템과 구조 시스템의 통합 최적 설계)

  • Park, J.H.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.38-43
    • /
    • 2003
  • This paper proposes an optimum design problem of structural and control systems. taking a 3-D truss structure as an example. The structure is supposed to be subjected to initial static loads and time-varying disturbances. The structure is controlled by a state feedback $H_{\infty}$ controller to suppress the effect of the disturbances. The design variables are the cross sectional areas of truss members. The structural objective function is the structural weight. As the control objective, we consider two types of performance indices. The first function represents the effect of the initial loads. The second one is the norm of the feedback gain. These objective functions are in conflict with each other. Then, first, two control objective functions are transformed into one control objective by the weighting method. Next, the structural objective is treated as the constraint. By introducing the second control objective which considers the magnitude of the feedback gain, we can per limn the design which is robust in modeling errors.

  • PDF

Multi-objective Optimization in Discrete Design Space using the Design of Experiment and the Mathematical Programming (실험계획법과 수리적방법을 이용한 이산설계 공간에서의 다목적 최적설계)

  • Lee, Dong-Woo;Baek, Seok-Heum;Lee, Kyoung-Young;Cho, Seok-Swoo;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2150-2158
    • /
    • 2002
  • A recent research and development has the requirement for the optimization to shorten design time of modified or new product model and to obtain more precise engineering solution. General optimization problem must consider many conflicted objective functions simultaneously. Multi-objective optimization treats the multiple objective functions and constraints with design change. But, real engineering problem doesn't describe accurate constraint and objective function owing to the limit of representation. Therefore this study applies variance analysis on the basis of structure analysis and DOE to the vertical roller mill fur portland cement and proposed statistical design model to evaluate the effect of structural modification with design change by performing practical multi-objective optimization considering mass, stress and deflection.

An efficient multi-objective cuckoo search algorithm for design optimization

  • Kaveh, A.;Bakhshpoori, T.
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.87-103
    • /
    • 2016
  • This paper adopts and investigates the non-dominated sorting approach for extending the single-objective Cuckoo Search (CS) into a multi-objective framework. The proposed approach uses an archive composed of primary and secondary population to select and keep the non-dominated solutions at each generation instead of pairwise analogy used in the original Multi-objective Cuckoo Search (MOCS). Our simulations show that such a low computational complexity approach can enrich CS to incorporate multi-objective needs instead of considering multiple eggs for cuckoos used in the original MOCS. The proposed MOCS is tested on a set of multi-objective optimization problems and two well-studied engineering design optimization problems. Compared to MOCS and some other available multi-objective algorithms such as NSGA-II, our approach is found to be competitive while benefiting simplicity. Moreover, the proposed approach is simpler and is capable of finding a wide spread of solutions with good coverage and convergence to true Pareto optimal fronts.

Development of Pareto strategy multi-objective function method for the optimum design of ship structures

  • Na, Seung-Soo;Karr, Dale G.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.602-614
    • /
    • 2016
  • It is necessary to develop an efficient optimization technique to perform optimum designs which have given design spaces, discrete design values and several design goals. As optimization techniques, direct search method and stochastic search method are widely used in designing of ship structures. The merit of the direct search method is to search the optimum points rapidly by considering the search direction, step size and convergence limit. And the merit of the stochastic search method is to obtain the global optimum points well by spreading points randomly entire the design spaces. In this paper, Pareto Strategy (PS) multi-objective function method is developed by considering the search direction based on Pareto optimal points, the step size, the convergence limit and the random number generation. The success points between just before and current Pareto optimal points are considered. PS method can also apply to the single objective function problems, and can consider the discrete design variables such as plate thickness, longitudinal space, web height and web space. The optimum design results are compared with existing Random Search (RS) multi-objective function method and Evolutionary Strategy (ES) multi-objective function method by performing the optimum designs of double bottom structure and double hull tanker which have discrete design values. Its superiority and effectiveness are shown by comparing the optimum results with those of RS method and ES method.

Study on multi-objective optimization method for radiation shield design of nuclear reactors

  • Yao Wu;Bin Liu;Xiaowei Su;Songqian Tang;Mingfei Yan;Liangming Pan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.520-525
    • /
    • 2024
  • The optimization design problem of nuclear reactor radiation shield is a typical multi-objective optimization problem with almost 10 sub-objectives and the sub-objectives are always demanded to be under tolerable limits. In this paper, a design method combining multi-objective optimization algorithms with paralleling discrete ordinate transportation code is developed and applied to shield design of the Savannah nuclear reactor. Three approaches are studied for light-weighted and compact design of radiation shield. Comparing with directly optimization with 10 objectives and the single-objective optimization, the approach by setting sub-objectives representing weight and volume as optimization objectives while treating other sub-objectives as constraints has the best performance, which is more suitable to reactor shield design.

Multi-Objective Design Exploration for Multidisciplinary Design Optimization Problems

  • Obayashi Shigeru;Jeong Shinkyu;Chiba Kazuhisa
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.1-10
    • /
    • 2005
  • A new approach, Multi-Objective Design Exploration (MODE), is presented to address Multidisciplinary Design Optimization (MDO) problems by CFD-CSD coupling. MODE reveals the structure of the design space from the trade-off information and visualizes it as a panorama for Decision Maker. The present form of MODE consists of Kriging Model, Adaptive Range Multi Objective Genetic Algorithms, Analysis of Variance and Self-Organizing Map. The main emphasis of this approach is visual data mining. An MDO system using high fidelity simulation codes, Navier-Stokes solver and NASTRAN, has been developed and applied to a regional-jet wing design. Because the optimization system becomes very computationally expensive, only brief exploration of the design space has been performed. However, data mining result demonstrates that design knowledge can produce a good design even from the brief design exploration.

  • PDF

Multi-Objective Optimization Using Kriging Model and Data Mining

  • Jeong, Shin-Kyu;Obayashi, Shigeru
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • In this study, a surrogate model is applied to multi-objective aerodynamic optimization design. For the balanced exploration and exploitation, each objective function is converted into the Expected Improvement (EI) and this value is used as fitness value in the multi-objective optimization instead of the objective function itself. Among the non-dominated solutions about EIs, additional sample points for the update of the Kriging model are selected. The present method was applied to a transonic airfoil design. Design results showed the validity of the present method. In order to obtain the information about design space, two data mining techniques are applied to design results: Analysis of Variance (ANOVA) and the Self-Organizing Map (SOM).

Design of a Swing-arm Actuator using the Compliant Mechanism - Multi-objective Optimal Design Considering the Stiffness Effect (컴플라이언트 메커니즘을 이용한 스윙 암 액추에이터의 설계 - 강성 효과를 고려한 다중목적 최적화 설계 -)

  • Lee Choong-yong;Min Seungjae;Yoo Jeonghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.128-134
    • /
    • 2006
  • Topology optimization is an effective scheme to obtain the initial design concept: however, it is hard to apply in case of non-linear or multi-objective problems. In this study, a modified topology optimization method is proposed to generate a structure of a swing arm type actuator satisfying maximum compliance as well. as maximum stiffness using the multi-objective optimization. approach. The multi-objective function is defined to maximize the compliance in the direction of focusing of the actuator and the second eigen-frequency of the structure. The design of experiments are performed and the response surface functions are formulated to construct the multi-objective function. The weighting factors between conflicting functions are determined by the back-error propagation neural network and the solution of multi-objective function is acquired using the genetic algorithm.