• 제목/요약/키워드: design low-flow

검색결과 1,013건 처리시간 0.032초

RANS simulation of secondary flows in a low pressure turbine cascade: Influence of inlet boundary layer profile

  • Michele, Errante;Andrea, Ferrero;Francesco, Larocca
    • Advances in aircraft and spacecraft science
    • /
    • 제9권5호
    • /
    • pp.415-431
    • /
    • 2022
  • Secondary flows have a huge impact on losses generation in modern low pressure gas turbines (LPTs). At design point, the interaction of the blade profile with the end-wall boundary layer is responsible for up to 40% of total losses. Therefore, predicting accurately the end-wall flow field in a LPT is extremely important in the industrial design phase. Since the inlet boundary layer profile is one of the factors which most affects the evolution of secondary flows, the first main objective of the present work is to investigate the impact of two different inlet conditions on the end-wall flow field of the T106A, a well known LPT cascade. The first condition, labeled in the paper as C1, is represented by uniform conditions at the inlet plane and the second, C2, by a flow characterized by a defined inlet boundary layer profile. The code used for the simulations is based on the Discontinuous Galerkin (DG) formulation and solves the Reynolds-averaged Navier-Stokes (RANS) equations coupled with the Spalart Allmaras turbulence model. Secondly, this work aims at estimating the influence of viscosity and turbulence on the T106A end-wall flow field. In order to do so, RANS results are compared with those obtained from an inviscid simulation with a prescribed inlet total pressure profile, which mimics a boundary layer. A comparison between C1 and C2 results highlights an influence of secondary flows on the flow field up to a significant distance from the end-wall. In particular, the C2 end-wall flow field appears to be characterized by greater over turning and under turning angles and higher total pressure losses. Furthermore, the C2 simulated flow field shows good agreement with experimental and numerical data available in literature. The C2 and inviscid Euler computed flow fields, although globally comparable, present evident differences. The cascade passage simulated with inviscid flow is mainly dominated by a single large and homogeneous vortex structure, less stretched in the spanwise direction and closer to the end-wall than vortical structures computed by compressible flow simulation. It is reasonable, then, asserting that for the chosen test case a great part of the secondary flows details is strongly dependent on viscous phenomena and turbulence.

진공흡입주형 주조법에서 탕구방안에 따른 주형 충전 양상 (Mold Cavity Filling by Gating Design in Vacuum Molding Process)

  • 강복현;김기영;김명한;홍영명
    • 한국주조공학회지
    • /
    • 제27권1호
    • /
    • pp.42-47
    • /
    • 2007
  • Vacuum molding process(V-process) has several benefits such as a lower total production cost and a high quality casting comparing to the conventional sand molding. Influence of the gating design on the molten metal flow was investigated in this study. General criteria for the gating design of the castings and commercial codes for the flow and solidification analysis were used to attain the optimized gating design in V-process. Though mold cavity was filled smoothly under the low initial velocity of molten metal, molten metal dashed against the upper part of the mold before the completion of the mold filling with higher initial molten metal velocity and fell soon. This phenomenon may affect collapsing the mold shape, however it is thought that the possibility of burning out of the vinyl by the molten metal is not so high because vinyl is coated with refractory material.

선미의 불균일 유동장에서 받음각을 고려한 비대칭 전류고정날개 설계 (Design of Asymmetric Pre-swirl Stator for KVLCC2 Considering Angle of Attack in Non-uniform Flow Fields of the Stern)

  • 이기승;김문찬;신용진;강진구
    • 대한조선학회논문집
    • /
    • 제56권4호
    • /
    • pp.352-360
    • /
    • 2019
  • International Maritime Organization (IMO) regulates an emission of greenhouse gases by creating an Energy Efficiency Design Index (EEDI) to reduce environmental pollution. In propulsion system field, studies are under way on Energy Saving Device (ESD), which can improve propulsion efficiency with the propeller, to reduce the EEDI. Among the studies, the study of Pre-Swirl Stator (PSS) has been actively conducted from long time ago. Recently the variable pith angle type pre-swirl stator has been studied to improve the propulsion efficiency in non-uniform flow fields of the Stern. However, for traditional design methods, no specific design method has been established on the blade or location of radius. In this study, proper design method is proposed for each blade or location for radius according to hydrodynamic pitch angle.

Influence of Blade Number on the Flow Characteristics in the Vertical Axis Propeller Hydro Turbine

  • Byeon, Sun-Seok;Kim, Youn-Jea
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권3호
    • /
    • pp.144-151
    • /
    • 2013
  • In this paper, the design method of a low-head propeller-type hydro turbine is studied for various numbers of blades on an axial propeller. We also investigate the relationship between geometrical parameters and internal performance parameters, such as angular velocities (100, 200, 300, 400 rpm) and 2.5~4m low heads through a three-dimensional numerical method with the SST turbulent model. The numerical results showed that the blade number had a more dominant influence than the change in heads and rotational speed on the flow characteristics of the turbine. The distributions of pressure and velocity in the streamwise direction of the propeller turbine were graphically depicted. Especially, the relationship among dimensionless parameters like specific speed ($N_s$), flow coefficient (${\phi}$) and power coefficient (P) were investigated.

베인 회전각의 변화에 따른 디퓨저의 성능특성에 관한 실험적 연구 (Experimental Study on the Performance Characteristics of the Diffuser as a Relation of the Variation of Vane Turning Angle)

  • 조성국;강신형
    • 한국유체기계학회 논문집
    • /
    • 제2권2호
    • /
    • pp.74-80
    • /
    • 1999
  • Recently, impressive gains of performance and efficiency with apparently little or no loss in flow range have been seen with the use of LSVD(Low Solidity Vaned Diffuser) over vaneless diffuser. Experiments of the effects of the vane turning angle variations(positive, negative, zero), with the other design parameters fixed, on the performance and flow range were carried out. Diffusers with a zero turning angle have the best characteristics in terms of performance and efficiency and the FFT results show different frequency characteristics due to vane turning angles in low flow range.

  • PDF

베인각도의 변화에 따른 디퓨저의 성능특성에 관한 실험적 연구 (Experimental study on the performance characteristics of the diffuser due to the variation of vane angle)

  • 조성국;강신형
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.142-148
    • /
    • 1998
  • Recently for the impressive gains of performance and efficiency over vaneless diffuser with apparently little or no loss in flow range, the use of LSVD(Low Solidity Vaned Diffuser) is well recommended. The experiments on the effect of the vane turning angle variation(positive, negative, zero) with other design parameters fixed on the performance and flow range were carried out. Diffuser with zero turning angle has the best characteristics in terms of performance and efficiency and The FFT results show the different frequency characteristics due to the vane turning angle in low flow range.

  • PDF

수치기법을 이용한 저소음 얼터네이터 냉각팬의 DFSS 최적 설계 (DFSS OPTIMUM DESIGN OF LOW NOISE COOLING FAN FOR AN ALTERNATOR BY NUMERICAL METHOD)

  • 김욱;전완호;현재진;임철구;이성하
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.233-238
    • /
    • 2008
  • An alternator which converts mechanical rotating energy into electric energy is an important component of a vehicle. It operates in broad range from 3000 RPM to 18000 RPM. So, sufficient flow rate and low noise are needed in such broad operating range for a cooling fan of this alternator. In current study, the cooling fan of an alternator is developed through DFSS process and numerical analysis. In order to calculate flow rate and noise level, SC/Tetra and Flow Noise are used respectively, for a new developed fan, compared with original model, numerical result shows 3 dBA reduction and measured value shows 4 dBA reduction.

  • PDF

수치기법을 이용한 저소음 얼터네이터 냉각팬의 DFSS 최적 설계 (DFSS OPTIMUM DESIGN OF LOW NOISE COOLING FAN FOR AN ALTERNATOR BY NUMERICAL METHOD)

  • 김욱;전완호;현재진;임철구;이성하
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.233-238
    • /
    • 2008
  • An alternator which converts mechanical rotating energy into electric energy is an important component of a vehicle. It operates in broad range from 3000 RPM to 18000 RPM. So, sufficient flow rate and low noise are needed in such broad operating range for a cooling fan of this alternator. In current study, the cooling fan of an alternator is developed through DFSS process and numerical analysis. In order to calculate flow rate and noise level, SC/Tetra and Flow Noise are used respectively, for a new developed fan, compared with original model, numerical result shows 3 dBA reduction and measured value shows 4 dBA reduction.

  • PDF

CFD에 의한 펌프장 Sump내 유동해석 (Flow Analysis around within Sump in a Pump Station using by the CFD)

  • 노형운;김재수;서상호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.89-94
    • /
    • 2002
  • n general, the function of intake structure, whether it be a open channel, a fully wetted tunnel, a sump or a tank, is to supply an evenly distributed flow to a pump station. An even distribution of flow, characterized by strong local flow, can result in formation of surface or submerged vortices, and with certain low values of submergence, may introduce air into pump, causing a reduction of capacity and efficiency, an increase in vibration and additional noise. Uneven flow distribution can also increase or decrease the power consumption with a change in total developed head. To avoid these sump problems pump station designers are considered intake structure dimensions, such as approaching upstream, baffle size, sump width, width of pump cell and so on. From this background, flow characteristics of intake within sump are investigated numerically to obtain the optimal sump design data. The sump model is designed in accordance with HI code.

  • PDF

유동소음을 고려한 건설장비용 머플러의 저소음화 연구 (A Study on the Noise Reduction of Construction Equipment's Muffler with the High Velocity Flow)

  • 김형택;주원호;배종국
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.802-805
    • /
    • 2007
  • The exhaust system, including a muffler, is one of the major sources to generate the radiated noise of construction equipment. The muffler is generally known that it reduces the exhaust noise level, but it sometimes increases the noise level because of the flow effect inside a muffler. So, it is required to consider the flow effect inside a muffler to reduce the exhaust noise level of construction equipment. In this paper, an experimental method to consider a quantitative flow effect inside a muffler was set up through a series of tests. Finally, the experimental result was verified through the flow noise analysis using CFD analysis result. These results make it possible to understand the dynamic characteristics of the flow noise and to design the low noise muffler for the construction equipment.

  • PDF