• 제목/요약/키워드: design equation

검색결과 4,075건 처리시간 0.031초

Design equation to evaluate bursting forces at the end zone of post-tensioned members

  • Kim, Joung Rae;Kwak, Hyo-Gyoung;Kim, Byung-Suk
    • Computers and Concrete
    • /
    • 제24권5호
    • /
    • pp.423-436
    • /
    • 2019
  • Design equations to evaluate the bursting force in a post-tensioned anchorage zone have been introduced in many design codes, and one equation in AASHTO LRFD is widely used. However, this equation may not determine the bursting force exactly because it was designed on the basis of two-dimensional numerical analyses without considering various design parameters such as the duct hole and shape of the bearing plate. To improve the design equation, modification of the AASHTO LRFD design equation was considered. The behavior of the anchorage zone was investigated using three-dimensional linear elastic finite element analysis with design parameters such as bearing plate size and diameter of sheath hole. Upon the suggestion of a modified design equation for evaluating the bursting force in an anchorage block with a rectangular anchorage plate (Kim and Kwak 2018), additional influences of design parameters that could affect the evaluation of bursting force were investigated. An improved equation was introduced for determining the bursting force in an anchorage block with a circular anchorage plate, using the same procedure introduced in the design equation for an anchorage block with a rectangular anchorage plate. The validity of the introduced design equation was confirmed by comparison with AASHTO LRFD.

확률론적 방법을 적용한 도로교량의 비파괴 압축강도식 평가 (Comparison Study on Nondestructive Strength Equation Based on Probability for Bridges)

  • 김훈겸
    • 한국도로학회논문집
    • /
    • 제20권3호
    • /
    • pp.39-46
    • /
    • 2018
  • PURPOSES: This study is to estimate nondestructive strength equation based on probability for bridges using field test data. METHODS : In this study, a series of the field inspection and the test have been performed on 297 existing bridges, in order to evaluate the bridges, based on the test results of the in-depth inspection, and the estimated strengths by means of the nondestructive strength equations are analyzed and compared with results of the core specimen strengths. RESULTS : According to results of analyses, In case of standard design compressive strength of concrete is 18MPa, 21MPa, similar reliability of RILEM equation were 0.89~0.90, but in case of standard design compressive strength of concrete is 35MPa, 40MPa were 0.4~0.56. According to standard design compressive strength of concrete is 40MPa, similar reliability of ultrasonic pulse velocity method equation were 0.56. CONCLUSIONS :RILEM equation had high similar reliability than other equation in case of standard design compressive strength of concrete is 18MPa, 21MPa, but had low similar reliability than other equation in case of standard design compressive strength of concrete is 35MPa, 40MPa. and ultrasonic pulse velocity method equation had low similar reliability than other equation in case of standard design compressive strength of concrete is 40MPa.

비부착 긴장재의 응력을 평가하기 위해 제안된 설계식의 타당성검증 (Verification of Proposed Design Equation for Stress Evaluation of Unbonded Tendons)

  • 임재형;문정호;이리형
    • 콘크리트학회지
    • /
    • 제11권2호
    • /
    • pp.127-137
    • /
    • 1999
  • 본 연구와 관련한 이전의 연구에서는 본 연구자들이 제안한 설계식의 타당성을 검증하기 위하여 선정된 변수별로 실험체를 제작하여 실험을 실시하였고 실험결과를 분석하였다. 본 연구에서는 실험결과에 대하여 본 연구자들이 제안한 설계식과 기존의 설계식들에 의한 해석결과를 비교분석하여 본 연구자들의 설계식의 타당성을 검증하였다. 사용된 기존의 설계식은 현행의 ACI 규준식, AASHTO LRFO 규준시, 변형도 적합조건에 의한 해석식, Harajli/Kanj의 설계식, Chakrabarti의 설계식 등이다. 비교${\cdot}$분석결과에 의하면 본 연구자득이 제안한 설계식이 비부착 긴장재의 응력을 평가하는데 보다 적절한 방법임을 증명하였다.

사출 금형의 벽두께 설계 방법의 고찰 (A Study on the Wall Thickness Design for Injection Molding)

  • 황수진;류민영;김도운;김수영;신광수;김기윤
    • 한국금형공학회:학술대회논문집
    • /
    • 한국금형공학회 2008년도 하계 학술대회
    • /
    • pp.149-153
    • /
    • 2008
  • The cavity of mold is exposed to high pressure during injection molding operation. Injection molded articles with deep depth are often demanded as design variety increases. Mold becomes weak and deformation increases as the mold depth increases. Thus the injection molds for deep depth articles should be designed to hold out high pressure or stress and large deformation. Through this study, equation for mold design was examined and suggested novel method to determine equation for mold design with deep depth. Novel equation developed in this study was consisted with cantilever and two points bending while previous equation was modified from just cantilever bending. The validity of novel equation was verified through computer simulation.

  • PDF

유한 요소 모델을 이용한 왕복동식 압축기 밸브의 거동 해석 및 형상 설계 민감도 해석 (Computer Simulation and Shape Design Sensitivity Analysis of the Valve inside the Reciprocal Compressor using Finite Element Model)

  • 이제원;왕세명;주재만;박승일;이성태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.796-801
    • /
    • 2002
  • The goal of this research is the shape design of the valve using a computer simulation. For an analysis a basic mathematical model describing compression cycle is considered as consisting of five sets of coupled equations. These are the volume equation (kinematics), valve dynamic equation (dynamics), ideal gas equation (thermodynamics), Bernoulli equation (fluid dynamics), and dynamic equation of fluid particle based on Helmholtz equation (acoustics). Valve motion is made by the superposition of free vibration modes obtained by the finite element method. That is, the eigenvalues and eigenvectors are the sufficient modeling factors fur the valve in the simulation program. Thus, to design a shape of the valve, shape design sensitivity through chain-ruled derivatives is considered from two sensitivity coefficients, one is the design sensitivity of the capability of compressor with respect to the eigenvalues of the valve, and the other is the design sensitivity of the eigenvalue with respect to the shape change of the valve. In this research, the continuum design sensitivity analysis concepts are used for the latter.

  • PDF

전력시설물 설계를 위한 풍하중 산정식 (Wind load equation for electric power facility design)

  • 최상현;서경석;이수형
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.42-54
    • /
    • 2009
  • The wind load equation for the design of electric power facilities such as electrical pole in railroad is based on the maximum wind velocity without considering regional difference in wind velocities. Also, the use of a different equation to highspeed railroad and the possibility of higher wind speed due to climate change claims a new design equation. In this paper, a wind load equation based on wind speed measurement data to date, which is applicable to both conventional and highspeed railroad is proposed. The proposed equation considers the regional differences in wind speed for economic and effective design, and the possibility of higher wind speed due to climate change.

  • PDF

Design Equation for Punching Shear Capacity of SFRC Slabs

  • Higashiyama, Hiroshi;Ota, Akari;Mizukoshi, Mutsumi
    • International Journal of Concrete Structures and Materials
    • /
    • 제5권1호
    • /
    • pp.35-42
    • /
    • 2011
  • In this paper, a design equation for the punching shear capacity of steel fiber reinforced concrete (SFRC) slabs is proposed based on the Japan Society of Civil Engineers (JSCE) standard specifications. Addition of steel fibers into concrete improves mechanical behavior, ductility, and fatigue strength of concrete. Previous studies have demonstrated the effectiveness of fiber reinforcement in improving the shear behavior of reinforced concrete slabs. In this study, twelve SFRC slabs using hooked-ends type steel fibers are tested with varying fiber dosage, slab thickness, steel reinforcement ratio, and compressive strength. Furthermore, test data conducted by earlier researchers are involved to verify the proposed design equation. The proposed design equation addresses the fiber pull-out strength and the critical shear perimeter changed by the fiber factor. Consequently, it is confirmed that the proposed design equation can predict the punching shear capacity of SFRC slabs with an applicable accuracy.

깊이가 깊은 사출 금형의 측벽 설계 방법 (A method of mold wall thickness design for a deep depth injection mold)

  • 황수진;류민영;김도운;김수영;신광수;김기윤
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.301-304
    • /
    • 2008
  • The cavity of mold is exposed to high pressure during injection molding operation. Injection molded articles with deep depth are often demanded as design variety increases. Mold becomes weak and deformation increases as the mold depth increases. Thus the injection molds for deep depth articles should be designed to hold out high pressure or stress and large deformation. Through this study, equation for mold design was examined and suggested novel method to determine equation for mold design with deep depth. Novel equation developed in this study was consisted with cantilever and two points bending while previous equation was modified from just cantilever bending. The validity of novel equation was verified through computer simulation.

  • PDF

깊이가 깊은 사출 금형의 새로운 측벽 두께 설계에 관한 연구 (A Study on the Novel Prediction of Mold Wall Thickness for a Deep Depth Injection Mold)

  • 황수진;류민영
    • 소성∙가공
    • /
    • 제17권7호
    • /
    • pp.528-533
    • /
    • 2008
  • Cavity in the mold is exposed to high pressure during injection molding operation. Injection molded articles with deep depth are often demanded as design variety increases. Subsequently mold becomes weak and deformation increases as the mold depth increases. Thus the injection molds for deep depth articles should be designed to hold out high pressure or stress concentration and large deformation. Through this study, equation for mold design was examined and suggested novel method to determine equation for mold design with deep depth. Novel equation developed in this study was modified from beam theory considering cantilever and two points bending situation while previous equation was modified from just cantilever bending situation. The validity of novel equation was verified through computer simulations for various mold side and wall thickness.

Characterization of Radial Stress in Curved Beams

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권2호
    • /
    • pp.128-136
    • /
    • 2009
  • Curved glued laminated timber (glulam) is rapidly coming into the domestic modern timber frame buildings and predominant in building construction. The radial stress is frequently occurred in curved beams and is a critical design parameter in curved glulam. Three models, Wilson equation, Exact solution and Approximation equation were introduced to determine the radial stress of curved glulam under pure bending condition. It is obvious that radial stress distribution between small radius and large radius was different due to slight change of neutral plane location to center line. If the beam design with extremely small radius, it should be considered to determine the exact location of maximum radial stress. The current standard KSF 3021 was reviewed and would be considered some adjustment determining the optimum radius in curved glulam. Current design principle is that the stress factor is given by the curvature term only in constant depth of the beam, but like tapered or small radius of beams, the stress factor by Wilson equation was underestimated. So current design formula should be considered to improvement for characterizing the radial stress factor under pure bending condition.