• Title/Summary/Keyword: design comparison

Search Result 6,453, Processing Time 0.046 seconds

Strength Prediction of RC Beams Subjected to Pure Torsions Using 3-D Strut-Tie Models (3차원 스트럿-타이 모델을 이용한 순수 비틀림을 받는 보의 강도예측)

  • 박정웅;윤영묵
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.409-412
    • /
    • 2003
  • ACI design code is not capable of evaluating the inter-effects between concrete and torsional reinforcement on the torsional resistance of the reinforced concrete beams. In this study, the failure strengths of the ten reinforced concrete beams subjected to pure torsion were evaluated using 3-dimensional strut-tie models. The analysis results obtained from the present study were compared with those obtained from the ACI design code. The comparison showed that the accuracy and performance of the present method were better than the ACI design code. Thus, the method implementing a 3-dimensional strut-tie model can be possibly applied to the analysis and design of the reinforced concrete beams subjected to pure torsion as a rational design method.

  • PDF

Structural Design for Performance Improvement of Line Center (라인센터의 성능향상을 위한 구조설계)

  • Cheong, Seon-Hwan;Choi, Seong-Dae;Kweon, Hyun-Kyu;Choi, Un-Don;Shon, Jae-Yool
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.76-83
    • /
    • 2003
  • Recently, the field of the engineering has been studied about optimum design continuously. Verified data by comparison with simulation and dynamic characteristic analysis enables the design of a machine tool to be modified easily and effectively concerning to the mode shape of the vibration. Especially, BC-500 Line Center has got some problems causing vibration which mainly come from Column and ATC part. So it is necessary to solve those problems by the two kinds of method such as changing structural design and reinforcing with ribs. In this paper, column and ATC part of BC-500 Line center are modified by an optimum design by the analysing method of FEM to avoid vibration. As a result, a more stable machine tool was designed by this simulation as optimum condition.

  • PDF

Design and Performance Analysis of Coreless Axial-Flux Permanent-Magnet Generator for Small Wind Turbines

  • Chung, Dae-Won;You, Yong-Min
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.273-281
    • /
    • 2014
  • This paper presents an innovative design for a low-speed, direct-drive, axial-flux permanent-magnet (AFPM) generator with a coreless stator and rotor that is intended for application to small wind turbine power generation systems. The performance of the generator is evaluated and optimized by means of comprehensive 3D electromagnetic finite element analysis. The main focus of this study is to improve the power output and efficiency of wind power generation by investigating the electromagnetic and structural features of a coreless AFPM generator. The design is validated by comparing the performance achieved with a prototype. The results of our comparison demonstrate that the proposed generator has a number of advantages such as a simpler structure, higher efficiency over a wide range of operating speeds, higher energy yield, lighter weight and better power utilization than conventional machines. It would be possible to manufacture low-cost, axial-flux permanent-magnet generators by further developing the proposed design.

Design Improvement and Evaluation of Mugunghwa-ho Passenger Seat (무궁화호 시트의 디자인 개선 및 평가)

  • 정광태;최기섭;구재광;조동우
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.210-218
    • /
    • 2000
  • It is absolutely important to design passenger seat so that train passengers can satisfy because passenger seat is one of the most important parts in tile determination of passenger's satisfaction for train.. So, it is necessary to consider passengers' characteristics, requirements, and dissatisfactions in seat design. However, passengers' dissatisfactions for the seat of Mugunghwa-ho train have been often raised through various routes. It is necessary to resolve their dissatisfactions to provide comfortable trip to passengers. So, we designed a seat of new Mugunghwa-ho train that resolved passengers' dissatisfactions. Our focusing design parts were the seat pan and the backrest of passenger seat. We investigated passengers' dissatisfactions for the seat of Mugunghwa-ho train through various methods and the human factors design guidelines of passenger seat through literature survey. We designed a new seat on the basis of investigated results. For newly designed seat, we evaluated comfort, sensible satisfaction, and fitness in comparison with the existing seat. An experimental method and a subjective method were used in this evaluation. In all aspects, new seat was superior to the existing.

  • PDF

A Study on the Optimal Design for a Positive Crankcase Ventilation valve (크랭크케이스 강제 환기 밸브의 최적설계에 관한 연구)

  • Lee J. H.;Lee Y. W.;Kim J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.197-201
    • /
    • 2005
  • According to operating conditions of each engine, a PCV valve has various flow rates and pressure characteristic. In a developed country, it has been developing by a computational design simulation. But, Korean companies have no ability of technical design for a PCV valve. So, they depend on their experiments and copy the designs of foreign companies when they need to design new PCV valves. These problems cause increase of error rate and take much time. Hence, optimal design for a PCV valve is needed to secure for continuous competition against foreign automobile companies. In this study, we used 4th order Runge-Kutta method for the prediction of spool movements and applied Bernoulli's equation for the determination of flow area. A spool geometry and spool displacement were predicted to be satisfied in comparison with their experiment.

  • PDF

Optimization of Sheet Metal Forming Process by using Decision-Making Theory (의사결정이론을 이용한 박판성형공정의 최적화)

  • Kim, Kyung-Mo;Yin, Jeong-Je
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.125-136
    • /
    • 2012
  • Wrinkle and fracture are two major defects frequently found in the sheet metal forming process. In this process there are more than one design attributes to optimize and several uncontrollable factors which cannot be ignored in determining the optimal values of design variables. Therefore, attempts to reduce defects through a traditional optimization technique are often led to failures. In this research, a new design method for reducing the wrinkle and fracture under uncontrollable factors is presented by using decision-making theory. To avoid the psychological difficulties in determining the scaling constants of the multi-attribute utility function by using the ordinary lottery questions, a pair-wise comparison procedure is adapted to avoid this problem. The effectiveness of the proposed method is illustrated through a robust design of sheet metal forming process of a side member of an automotive body.

Process Design of Seat Rail in Automobile by the Advanced High Strength Steel of DP780 (DP780 초고장력 강판을 이용한 자동차용 시트레일의 성형공정 설계)

  • Ko, D.C.;An, J.H.;Jang, M.J.;Bae, J.H.;Kim, C.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.197-202
    • /
    • 2008
  • The control of springback is very important in sheet metal forming since springback affects the dimensional inaccuracy of product. The object of this study is to design the manufacturing process for the improvement of the performance of seat rail by DP780. The influence of process variables such as bend angle and pad force on the springback has been firstly investigated through the comparison between the results of FE-analysis and trial out for initial design based on designer's experience. The process variables of the initial design have been modified in order to improve the dimensional accuracy of seat rail from the prediction of springback by FE-analysis. It was shown from experiment that the improved design satisfied the required specifications such as the dimensional accuracy and the strength of seat rail.

A Study on Dynamic Characteristics Improvement of Fast Response Proportional Flow Control Valve (고응답 비래 유량제어 밸브의 동특성 향상에 관한 연구)

  • 김고도;김원수;이현철;윤소남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1053-1057
    • /
    • 1996
  • The purpose of this study is to bring out the optimal design factors which effect on dynamic characteristics in the design of proportional flow control valve with fast response characteristics, and to verify the validity of the design factors In this study, force feedback type flow control valve with nozzle-flapper is studied. And, the influences which fixed orifice, nozzle diameter, and maximum displacement between nozzle and flapper effect on dynamic characteristics are analyzed. We have done simulations using the optimal design factors and simulink(Matlab) as a simulation tool, and verified the validity of our simulations by means of comparison our simulation results with an experimental results of another similar valve.

  • PDF

Optimal Design for CLIP EPDM Rubber Products using a Flow Analysis

  • Huh, Young-Min;Lee, Kwang-O;Kang, Sung-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.23-27
    • /
    • 2006
  • Rubber is used in many industrial products, such as hoses, rubber belts, and oil seals. In particular, more than 200 rubber parts are used in automobiles. The design technology of these parts is largely dependent on field experience, which leads to lengthy and expensive developing procedures. However, with the help of recent developments in nonlinear computer analysis, new rubber products can be developed at low cost. In this study, rubber injection molding design variables, such as location and number of gates, were optimized using computer-aided engineering with the cross-WLF equation to produce CLIP rubber products made from ethylene propylene diene monomer(EPDM). The validity of the proposed design was evaluated by comparison with actual forming results.

Application of Genetic Algorithm to Die Shape Otimization in Extrusion (압출공정중 금형 형상 최적화문제에 대한 유전 알고리즘의 적용)

  • 정제숙;황상무
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.269-280
    • /
    • 1996
  • A new approach to die shape optimal design in extrusion is presented. The approach consists of a FEM analysis model to predict the value of the objective function a design model to relate the die profile with the design variables and a genetic algorithm based optimaization procedure. The approach was described in detail with emphasis on our modified micro genetic algorithm. Comparison with theoretical solutions was made to examine the validity of the predicted optimal die shapes. The approach was then applied to revealing the optimal die shapes with regard to various objective functions including those for which the design sensitivities can not be deter-mined analytically.

  • PDF