• Title/Summary/Keyword: design codes

Search Result 1,775, Processing Time 0.027 seconds

The comparison of sectional damages in reinforced-concrete structures and seismic parameters on regional Basis; a case study from western Türkiye (Aegean Region)

  • Ercan Isik;Hakan Ulutas;Aydin Buyuksarac
    • Earthquakes and Structures
    • /
    • v.24 no.1
    • /
    • pp.37-51
    • /
    • 2023
  • Türkiye has made significant changes and updates in both seismic risk maps and design codes over time, as have other countries with high seismic risk. In this study, the last two seismic design codes and risk maps were compared for the Aegean Region (Western Türkiye) where the earthquake risk has once again emerged with the 2020 Izmir Earthquake (Mw=6.9). In this study, information about the seismicity of the Aegean Region was given. The seismic parameters for all provinces in the region were compared with the last two earthquake risk maps. The spectral acceleration coefficients of all provinces have increased and differentiated with the current seismic hazard map as a result of the design spectra used on a regional basis have been replaced by the geographical location-specific design spectra. In addition, section damage limits were obtained for all provinces within the scope of the last two seismic design codes. Structural analyses for a sample reinforced-concrete building were made separately for each province using pushover analysis. The deformations in the cross-sections were compared with the limit states corresponding to the damage levels specified in the last two seismic design codes for the region. Target displacement requests for all provinces have decreased with the current code. The differentiation of geographical location-specific design spectra both in the last two seismic design code and between provinces has caused changes in section damages and building performance levels. The main aim of this study is to obtain and compare both seismic and structural analysis results for all provinces in the Aegean Region (Western Türkiye).

Midship Section Design of Ship Structures Based on Reliability Analysis (신뢰성 해석에 기초한 선체 중앙단면 설계)

  • Lee, Joo-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.507-512
    • /
    • 2011
  • This study is concerned with the reliability analysis and its based design of midship section against the ultimate bending strength. Eight bulk carriers and seven oil tankers over 100m length are chosen for the present study. Target reliability indices for the two ship types have been derived based on the results reliability analysis of the present ship models. Reliability-based structural design codes are proposed for use in design of midship section of bulk carriers and oil tankers. The design codes proposed in this study have been successfully applied to re-design of midship section of the present ship types. It has been found that the proposed codes can provide more uniform structural design results.

Analysis of Hip-hop Fashion Codes in Contemporary Chinese Fashion

  • Sen, Bin;Haejung, Yum
    • Journal of Fashion Business
    • /
    • v.26 no.6
    • /
    • pp.1-13
    • /
    • 2022
  • The purpose of this study was to find out the type of fashion codes hip-hop fashion has in contemporary Chinese fashion, and the frequency and characteristics of each fashion code. Text mining, which is the most basic analysis method in big data analyticswas used rather than traditional design element analysis. Specific results were as follows. First, hip-hop initially entered China in the late 1970s. The most historical turning point was the American film "Breakin". Second, frequency and word cloud analysis results showed that the "national tide" fashion code was the most notable code. Third, through word embedding analysis, fashion codes were divided into types of "original hip-hop codes", "trendy hip-hop codes", and "hip-hop codes grafted with traditional Chinese culture".

Quantifying the seismic resilience of two tall buildings designed using Chinese and US Codes

  • Tian, Yuan;Lu, Xiao;Lu, Xinzheng;Li, Mengke;Guan, Hong
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.925-942
    • /
    • 2016
  • With ongoing development of earthquake engineering research and the lessons learnt from a series of strong earthquakes, the seismic design concept of "resilience" has received much attention. Resilience describes the capability of a structure or a city to recover rapidly after earthquakes or other disasters. As one of the main features of urban constructions, tall buildings have greater impact on the sustainability and resilience of major cities. Therefore, it is important and timely to quantify their seismic resilience. In this work, a quantitative comparison of the seismic resilience of two tall buildings designed according to the Chinese and US seismic design codes was conducted. The prototype building, originally designed according to the US code as part of the Tall Building Initiative (TBI) Project, was redesigned in this work according to the Chinese codes under the same design conditions. Two refined nonlinear finite element (FE) models were established for both cases and their seismic responses were evaluated at different earthquake intensities, including the service level earthquake (SLE), the design-based earthquake (DBE) and the maximum considered earthquake (MCE). In addition, the collapse fragility functions of these two building models were established through incremental dynamic analysis (IDA). Based on the numerical results, the seismic resilience of both models was quantified and compared using the new-generation seismic performance assessment method proposed by FEMA P-58. The outcomes of this study indicate that the seismic resilience of the building according to the Chinese design is slightly better than that according to the US design. The conclusions drawn from this research are expected to guide further in-depth studies on improving the seismic resilience of tall buildings.

Design and Performance Analysis of Nonbinary LDPC Codes With Low Error-Floors (오류 마루 현상이 완화된 비이진 LDPC 부호의 설계 및 성능 분석 연구)

  • Ahn, Seok-Ki;Lim, Seung-Chan;Yang, Youngoh;Yang, Kyeongcheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.10
    • /
    • pp.852-857
    • /
    • 2013
  • In this paper we propose a design algorithm for nonbinary LDPC (low-density parity-check) codes with low error-floors. The proposed algorithm determines the nonbinary values of the nonzero entries in the parity-check matrix in order to maximize the binary minimum distance of the designed nonbinary LDPC codes. We verify the performance of the designed nonbinary LDPC codes in the error-floor region by Monte Carlo simulation and importance sampling over BPSK (binary phase-shift keying) modulation.

Signal Design of grouping Quasi-Orthogonal Space Time Block Codes on the Multi-dimensional Signal Space (다차원 신호 공간에서 그룹 준직교 시공간 블록 부호의 신호 설계)

  • Yeo, Seung-Jun;Heo, Seo-Weon;Lee, Ho-Kyoung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.3
    • /
    • pp.40-45
    • /
    • 2008
  • This paper proposes the signal design techniques of quasi-orthogonal space time block codes (QO-STBCS) on the multi-dimensional signal space. In the multiple antenna system(MIMO), QO-STBC achieves the full-diversity and full-rate by grouping two based-symbols. We study the condition for the full-diversity of the grouping QO-STBC geometrically and the performance analysis of codes on the multi-dimensional signal space regarding the various signal constellations. Simulation results show that the way of the performance analysis is validity.

A Novel Process Design for Analyzing Malicious Codes That Bypass Analysis Techniques (분석기법을 우회하는 악성코드를 분석하기 위한 프로세스 설계)

  • Lee, Kyung-Roul;Lee, Sun-Young;Yim, Kang-Bin
    • Informatization Policy
    • /
    • v.24 no.4
    • /
    • pp.68-78
    • /
    • 2017
  • Malicious codes are currently becoming more complex and diversified, causing various problems spanning from simple information exposure to financial or psychologically critical damages. Even though many researches have studied using reverse engineering to detect these malicious codes, malicious code developers also utilize bypassing techniques against the code analysis to cause obscurity in code understanding. Furthermore, rootkit techniques are evolving to utilize such bypassing techniques, making it even more difficult to detect infection. Therefore, in this paper, we design the analysis process as a more agile countermeasure to malicious codes that bypass analysis techniques. The proposed analysis process is expected to be able to detect these malicious codes more efficiently.

Single and High-Lift Airfoil Design Optimization Using Aerodynamic Sensitivity Analysis

  • Kim, Chang Sung;Lee, Byoungjoon;Kim, Chongam;Rho, Oh-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.20-27
    • /
    • 2001
  • Aerodynamic sensitivity analysis is performed for the Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method and a direct differentiation method respectively. Like the mean flow equations, the turbulence model equations are also hand-differentiated to accurately calculate the sensitivity derivatives of flow quantities with respect to design variables in turbulent viscous flows. The sensitivity codes are then compared with the flow solver in terms of solution accuracy, computing time and computer memory requirements. The sensitivity derivatives obtained from the sensitivity codes with different turbulence models are compared with each other. The capability of the present sensitivity codes to treat complex geometry is successfully demonstrated by analyzing the flows over multi-element airfoils on Chimera overlaid grid systems.

  • PDF

Development of Performance-Based Seismic Design in U.S.A (미국의 차세대 내진설계 개념의 발전 동향)

  • 이한선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.44-53
    • /
    • 1998
  • The objective of this paper is to review the current state of practice in the seismic codes in the U.S.A. and to investigate its trend in the development of performance-based seismic design for the 21st century. This study is supposed to be eventually utilized as a basis material to establish the new seismic code appropriate in our country having the moderate seismic hazard. To do this, the history of the seismic codes in U.S.A. is first briefly investigated and then the critical review on the recent codes is made. Finally, the conceptual framework of the performance-based seismic design and the development of the guideline documents to implement this to the rehabilitation of existing building structures are introduced.

  • PDF

Design of the layered coding with rate compatible block turbo codes (블록 터보 부호를 이용한 계층적 부호화 방식 설계)

  • Oh, Ji-Won;Hwang, Ki-Seon;Lee, Jing;Kim, Soo-Young
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.87-88
    • /
    • 2007
  • In this paper, we propose a design of the layered coding with block turbo codes. The proposed scheme can be used efficiently for multimedia broadcasting and multicasting services by adaptive selection of a modulation and coding scheme at a receiver. This paper demonstrates various design examples of the layered coding using rate compatible block turbo codes.

  • PDF