Browse > Article
http://dx.doi.org/10.12989/eas.2016.11.6.925

Quantifying the seismic resilience of two tall buildings designed using Chinese and US Codes  

Tian, Yuan (Beijing Engineering Research Center of Steel and Concrete Composite Structures, Tsinghua University)
Lu, Xiao (Department of Civil Engineering, Beijing Jiaotong University)
Lu, Xinzheng (Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Department of Civil Engineering, Tsinghua University)
Li, Mengke (Beijing Engineering Research Center of Steel and Concrete Composite Structures, Tsinghua University)
Guan, Hong (Griffith School of Engineering, Griffith University Gold Coast Campus)
Publication Information
Earthquakes and Structures / v.11, no.6, 2016 , pp. 925-942 More about this Journal
Abstract
With ongoing development of earthquake engineering research and the lessons learnt from a series of strong earthquakes, the seismic design concept of "resilience" has received much attention. Resilience describes the capability of a structure or a city to recover rapidly after earthquakes or other disasters. As one of the main features of urban constructions, tall buildings have greater impact on the sustainability and resilience of major cities. Therefore, it is important and timely to quantify their seismic resilience. In this work, a quantitative comparison of the seismic resilience of two tall buildings designed according to the Chinese and US seismic design codes was conducted. The prototype building, originally designed according to the US code as part of the Tall Building Initiative (TBI) Project, was redesigned in this work according to the Chinese codes under the same design conditions. Two refined nonlinear finite element (FE) models were established for both cases and their seismic responses were evaluated at different earthquake intensities, including the service level earthquake (SLE), the design-based earthquake (DBE) and the maximum considered earthquake (MCE). In addition, the collapse fragility functions of these two building models were established through incremental dynamic analysis (IDA). Based on the numerical results, the seismic resilience of both models was quantified and compared using the new-generation seismic performance assessment method proposed by FEMA P-58. The outcomes of this study indicate that the seismic resilience of the building according to the Chinese design is slightly better than that according to the US design. The conclusions drawn from this research are expected to guide further in-depth studies on improving the seismic resilience of tall buildings.
Keywords
performance-based design method; seismic loss; resilience; tall building; design codes;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Fan, H., Li, Q.S., Tuan, A.Y. and Xu, L.H. (2009), "Seismic analysis of the world's tallest building", J. Constr. Steel Res., 65(5), 1206-1215.   DOI
2 FEMA. (2008), Casualty Consequence Function and Building Population Model Development (FEMA P-58/BD-3.7.8), Federal Emergency Management Agency; Washington, DC, USA.
3 FEMA. (2009), Quantification of building seismic performance factors (FEMA P695), Federal Emergency Management Agency;Washington, DC, USA.
4 FEMA. (2012a), Seismic Performance Assessment of Buildings: Volume 1 - Methodology (FEMA P-58-1), Federal Emergency Management Agency; Washington, DC, USA.
5 FEMA. (2012b), Seismic Performance Assessment of Buildings: Volume 2 - Implementation guide (FEMA P-58-2), Federal Emergency Management Agency;Washington, DC, USA.
6 He, M.J., Li, Z., Ma, R.L. and Liang, F. (2014), "Experimental and numerical investigations on seismic performance of a super tall steel tower", Earthq. Struct., 7(4), 571-586.   DOI
7 Hemsas, M., Elachachi, S.M. and Breysse, D. (2014), "Seismic response and damage development analyses of an RC structural wall building using macro-element", Struct. Eng. Mech., 51(3), 447-470.   DOI
8 Jacques, C.C., Mcintosh, J., Giovinazzi, S., Kirsch, T.D., Wilson, T. and Mitrani-Reise, J. (2014), "Resilience of the Canterbury hospital system to the 2011 Christchurch Earthquake", Earthq. Spectra, 30(1), 533-554.   DOI
9 Jiang, H.J., Fu, B., Liu, L.E. and Yin, X.W. (2014), "Study on seismic performance of a super-tall steel-concrete hybrid structure", Struct. Des. Tall Spec., 23(5), 334-349.   DOI
10 Eads, L., Miranda, E., Krawinkler, H. and Lignos D.G. (2013), "An efficient method for estimating the collapse risk of structures in seismic regions", Earthq. Eng. Struct. Dyn., 42(1), 25-41.   DOI
11 Kim, S. and Lee, K. (2013), "Seismic performance of wind-designed diagrid tall steel buildings in regions of moderate seismicity and strong wind", Steel Compos. Struct., 14(2), 155-171.   DOI
12 Kircher, C.A. (2003), "It makes dollars and sense to improve nonstructural system performance", Proceedings of ATC 29-2 Seminar on Seismic Design, Performance, and Retrofit of Nonstructural Components in Critical Facilities, Newport Beach, CA, USA, October.
13 Liu, X.J. and Jiang, H.J. (2013), "Stake-of-the-art of performance-based seismic research on nonstructural components", J. Earthq. Eng. Eng. Vib., 33(6), 53-62. (in Chinese)
14 Lu, X., Lu, X.Z., Zhang, W.K. and Ye, L.P. (2011), "Collapse simulation of a super high-rise building subjected to extremely strong earthquakes", Sci. China-Technol. Sci., 54(10), 2549-2560.   DOI
15 Lu, X., Lu, X.Z., Guan, H. and Ye, L.P. (2013b), "Collapse simulation of reinforced concrete high-rise building induced by extreme earthquakes", Earthq. Eng. Struct. Dyn., 42(5), 705-723.   DOI
16 Lu, X., Lu, X.Z., Sezen, H. and Ye, L.P. (2014), "Development of a simplified model and seismic energy dissipation in a super-tall building", Eng. Struct., 67, 109-122.   DOI
17 Lu, X.L., Zou, Y., Lu, W.S. and Zhao, B. (2007), "Shaking table model test on Shanghai World Financial Center Tower", Earthq. Eng. Struct. Dyn., 36(4), 439-457.   DOI
18 Lu, X.Z., Lu, X., Guan, H., Zhang, W.K. and Ye, L.P. (2013a), "Earthquake-induced collapse simulation of a super-tall mega-braced frame-core tube building", J. Constr. Steel Res., 82, 59-71.   DOI
19 Almufti, I. and Willford, M. (2013), "REDiTM Rating System: Resilience-based Earthquake Design Initiative for the Next Generation of Buildings", ARUP Co.
20 Asgarian, B., Sadrinezhad, A. and Alanjari, P. (2010), "Seismic performance evaluation of steel moment resisting frames through incremental dynamic analysis", J. Constr. Steel Res., 66(2), 178-190.   DOI
21 Bazzurro, P. and Cornell, C.A. (1994a), "Seismic hazard analysis of nonlinear structures. I: Methodology", J. Struct. Eng., 120(11), 3320-3344.   DOI
22 Bazzurro, P. and Cornell, C.A. (1994b), "Seismic hazard analysis of nonlinear structures. II: Applications", J. Struct. Eng., 120(11), 3345-3365.   DOI
23 Bertero, V.V. (1977), "Strength and deformation capacities of buildings under extreme environments", Struct. Eng. Struct. Mech., 53(1), 29-79.
24 Biondini, F., Camnasio, E. and Titi, A. (2015), "Seismic resilience of concrete structures under corrosion", Earthq. Eng. Struct. Dyn., 44(14), 2445-2466.   DOI
25 Moehle, J., Bozorgnia, Y., Jayaram, N., Jones, P., Rahnama, M., Shome, N., Tuna, Z., Wallace, J., Yang, T. and Zareian, F. (2011), "Case studies of the seismic performance of tall buildings designed by alternative means", Pacific Earthquake Engineering Research Center, University of California, Berkeley, California, USA, July.
26 Lu, X.Z., Xie, L.L., Guan, H., Huang, Y.L. and Lu, X. (2015a), "A shear wall element for nonlinear seismic analysis of super-tall buildings using OpenSees", Finite Elem. Anal. Des., 98, 14-25.   DOI
27 Lu, X.Z., Li, M.K., Guan, H., Lu, X. and Ye, L.P. (2015b), "A Comparative case study on seismic design of tall RC frame-core-tube structures in China and USA", Struct. Des. Tall Spec., 24(9), 687-702.   DOI
28 Lu, X., Lu, X.Z., Guan, H. and Xie, L.L. (2016a), "Application of earthquake-induced collapse analysis in design optimization of a super-tall building", Struct. Des. Tall Spec., doi: 10.1002/tal.1291.   DOI
29 Lu, X.Z., Xie, L.L., Yu, C. and Lu, X. (2016b), "Development and application of a simplified model for the design of a super-tall mega-braced frame-core tube building", Eng. Struct., 110, 116-126.   DOI
30 Mieler, M.W., Stojadinovic, B., Budnitz, R.J., Mahin, S.A. and Comerio, M.C. (2013), "Toward resilient communities: A performance-based engineering framework for design and evaluation of the built environment", Pacific Earthquake Engineering Research Center, University of California, Berkeley, California, USA, September.
31 Nazri, F.M. and Ken, P.Y. (2014), "Seismic performance of moment resisting steel frame subjected to earthquake excitations", Front. Struct. Civ. Eng., 8(1), 19-25.   DOI
32 Christovasilis, I.P., Filiatrault, A., Constantinou, M.C. and Wanitkorkul, A. (2009), "Incremental dynamic analysis of woodframe buildings", Earthq. Eng. Struct. Dyn., 38(4), 477-496.   DOI
33 Bruneau, M., Chang, S.E., Eguchi, R.T., Lee, G.C., O'Rourke, T.D., Reinhorn, A.M., Shinozuka, M., Tierney, K., Wallace, W.A. and von Winterfeldt, D. (2003), "A framework to quantitatively assess and enhance the seismic resilience of communities", Earthq. Spectra, 19(4), 733-752.   DOI
34 Chang, S.E. and Shinozuka, M. (2004), "Measuring improvements in the disaster resilience of communities", Earthq. Spectra, 20(3), 739-755.   DOI
35 Chang, C.M., Wang, Z.H., Spencer, Jr. B.F. and Chen, Z.Q. (2013), "Semi-active damped outriggers for seismic protection of high-rise buildings", Smart Struct. Syst., 11(5), 435-451.   DOI
36 Cimellaro, G.P., Reinhorn, A.M. and Bruneau, M. (2010), "Seismic resilience of a hospital system", Struct. Infrastruct. Eng., 6(1-2), 127-144.   DOI
37 GB50011-2010. (2010), Code for Seismic Design of Buildings, Beijing, China. (in Chinese)
38 Comerio, M.C. (2000), "The economic benefits of a disaster resistant university: Earthquake loss estimation for UC Berkeley", Institute of Urban & Regional Development, Berkeley, California, USA.
39 Comerio, M.C. and Blecher, H.E. (2010), "Estimating downtime from data on residential buildings after the Northridge and Loma Prieta Earthquakes", Earthq. Spectra, 26(4), 951-965.   DOI
40 Davis Langdon. (2010), "Program cost model for PEER tall buildings study concrete dual system structural option", Pacific Earthquake Engineering Research Center, Los Angeles, California, USA.
41 TBI. (2010), Guidelines for performance-based seismic design of tall buildings, Pacific Earthquake Engineering Research Center; Berkeley, California, USA.
42 Poon, D., Hsiao, L., Zhu, Y., Joseph, L., Zuo, S., Fu, G. and Ihtiyar, O. (2011), "Non-Linear Time History Analysis for the Performance Based Design of Shanghai Tower", Structures Congress 2011, Las Vegas, Nevada, USA, April.
43 PPD-8 (2011), Presidential Policy Directive/PPD-8: National Preparedness, http://www.dhs.gov/presidential-policy-directive-8-national-preparedness, the White House, Washington, DC, USA, March 20, 2011. [accessed 8 January 2016]
44 Deco, A., Bocchini, P. and Frangopol, D.M. (2013), "A probabilistic approach for the prediction of seismic resilience of bridges", Earthq. Eng. Struct. Dyn., 42(10), 1469-1487.   DOI
45 PPD-21 (2013). Presidential Policy Directive/PPD-21, http://www.whitehouse.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-and-resil, the White House, Washington, DC, USA, February 12, 2013. [accessed 8 January 2016]
46 Rose, A. (2004), "Defining and measuring economic resilience to disasters", Disaster Prevent. Manage., 13(4), 307-314.   DOI
47 Shi, W., Lu, X.Z., Guan, H. and Ye L.P. (2014), "Development of seismic collapse capacity spectra and parametric study", Adv. Struct. Eng., 17(9), 1241-1256.   DOI
48 Takewaki, I. and Tsujimoto, H. (2011), "Scaling of design earthquake ground motions for tall buildings based on drift and input energy demands", Earthq. Struct., 2(2), 171-187.   DOI
49 United Nations Development Programme (2015), UNDP announces '5-10-50' - new global programme in support of disaster resilience, http://www.undp.org/content/undp/en/home/presscenter/pressreleases/2015/03/17/undp-announces-5-10-50-new-global-programme-in-support-of-disaster-resilience.html, UNDP, 17 March, 2015. [accessed 29 December 2015].
50 Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514.   DOI
51 Wikipedia Contributors (2015), List of tallest buildings in Christchurch, https://en.wikipedia.org/w/index.php?title=List_of_tallest_buildings_in_Christchurch&oldid=675499611, Wikipedia, The Free Encyclopedia; 10 August 2015, 23:55 UTC. [accessed 23 August 2015]