• Title/Summary/Keyword: design and simulation

Search Result 16,033, Processing Time 0.046 seconds

Yard Design of the Container Terminal using the Simulation (시뮬레이션을 이용한 컨테이너 터미널의 장치장 설계)

  • 하태영;최용석;김우선
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.11a
    • /
    • pp.35-40
    • /
    • 2003
  • This paper presents a method for designing layout on the yard and evaluating alternative designs of the layout by applying simulation. The method is based on the concepts of the conventional port container terminal with a perpendicular yard layout. In general, yard design of the container terminal is consists of the two major parts. One is to divide yard area between the number of sections and the number of runs and the other is to decide the number of equipment that is the yard truck and yard crane. In the past days, this design was depended on the experience of the terminal operator and the structure of the conventional terminal layout because it is a very complex decision problem. In this paper we suggest the method of yard design as a conceptual procedure and estimate the efficiency of the container crane and the optimal the number of equipment using the simulation. Numerical examples are provided in order to illustrate the conceptual procedure. As the example, the suggested method and simulation are applied to the virtual container terminal with a perpendicular yard layout. In the results, the number of sections and runs on yard area, the number of yard truck per container crane and the number of yard crane per run are decided. In additional, the traffic among blocks on yard layout is estimated in terms of rate.

  • PDF

A Study on the submarine operational effectiveness simulation model in the concept design phase (개념설계 단계의 잠수함 작전효과도 시뮬레이션 모델 연구)

  • Park Jun-Kyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.47-58
    • /
    • 2004
  • This paper focuses on the technical information about the development of the submarine operational effectiveness simulation model for the feasibility study stage of the submarine design. The simulation model is classified into simulation control model and system model. Using user input and related performance parameters, it can simulate various scenarios by no change of the program because it includes tactic manager which makes decision about every situation. And the Monte-Carlo simulation mode which provides the stochastic results is available. Through the test simulation, the usefulness of the simulation model was verified. It should be helpful for the analysis of the submarine operational effectiveness by diversified scenarios in the concept design phase..

A Method of Reusing Kinematic Information for Virtual Facilities (동작 정보를 갖는 가상설비 데이터 재활용 방법론)

  • Ko, Min-Suk;Shin, Hye-Seon;Wang, Gi-Nam;Park, Sang-Chul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.4
    • /
    • pp.305-313
    • /
    • 2011
  • This paper proposes a method for reusing kinematic design data for virtual facilities, Making a virtual model of a facility involves two major activities: geometric design (virtual model visualization) and kinematic design that should be remodeled frequently whenever design changes occur, Conventionally, a virtual model of an automated facility focuses on the design level, which mainly deals with design verification, alternative comparison, and geometric model diagnosis, Although a design level model can be designed with the information of past models from PLM system, a simulation level model is not sufficient utilized to be reused for kinematic design purpose, We propose a method for reusing kinematic information of a past simulation model to cope with this problem, We use the concept or the 'center of mass', which is a point representing the mean position of the matter in a body or system. And we also use comparison method of a boundary box to identity which 3D objects have to be involved from the design model to a link structure that is contained in the simulation model. Because a proposed method only use not a historical approach but a geometrical approach, it is more effective to apply to the field.

Simulation of Design Factor Effects on Performance of Vacuum System (진공시스템 성능에 대한 설계인자 영향 전산모사)

  • Kim, Hyung-Taek;Jeong, Kwang-Pil
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.405-413
    • /
    • 2007
  • Effect of design factors on the performance of vacuum system was simulated for optimum design of system. In this investigation, the feasibility of modelling mechanism for $VacSim^{Multi}$ simulator was proposed. Simulation results of pumping design factor showed the possibilities of simulation fore-study for the detailed design factors. Simulation of roughing pump presented the expected pumping behaviors based on the specifications of commercial pump. Application of booster pump exhibited the high pumping efficiency for middle vacuum range. Combinations of optimum backing pump for diffusion and turbo vacuum system were obtained. And, the characteristics of process application of both systems were also acquired.

Dynamic Analysis and Optimization of 1ton Commercial Truck Using ADAMS/Insight (ADAMS/Insight를 이용한 1톤 상용트럭의 동역학 해석 및 최적화)

  • Chun, Hung-Ho;Tak, Tae-Oh
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.15-20
    • /
    • 2003
  • Stochastic simulation technique has advantages over deterministic simulation in various engineering analysis, since stochastic simulation can take into consideration of scattering of various design variables, which is inherent characteristics of physical world. In this work, Monte-Carlo simulation mothod in ADAMS/Insight for steady-state cornering and J-turn behavior of a truck with design variables like hard points and busing stiffnesses have performed to achieve better dynamic performance. The main purpose is to improve understeer gradient at steady-state cornering and minimize peak lateral acceleration and peak yaw rate at J-turn. Through correlation analysis, design variables that have high impacts on the cornering behavior were selected, and significant performance improvement has been achieved by appropriately changing the high impact design variables.

  • PDF

Performance Improvement of ASIP Assembly Simulator Using Compiled Simulation Technique (컴파일방식 시뮬레이션 기법을 이용한 ASIP 어셈블리 시뮬레이터의 성능 향상)

  • 김호영;김탁곤
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.2
    • /
    • pp.45-53
    • /
    • 2003
  • This paper presents a retargetable compiled assembly simulation technique for fast ASIP(application specific instruction processor) simulation. Development of ASIP which satisfies design requirements in various fields of applications such as telecommunication, wireless network, etc. needs formal design methodology and high-performance relevant software environments such as compiler and simulator In this paper, we employ the architecture description language(ADL) named ${HiXR}^2$ to automatically synthesize an instruction-level compiled assembly simulator. A compiled simulation has benefit of time efficiency to interpretive one because it performs instruction fetching and decoding at compile time. Especially, in case of assembly simulation, instruction decoding is usually a time-consuming job(string operation), so the compiled simulation of assembly simulation is more efficient than that of binary simulation. Performance improvement of the compiled assembly simulation based on ${HiXR}^2$ is exemplified with an ARM9 architecture and a CalmRISC32 architecture. As a result, the compiled simulation is about 150 times faster than interpretive one.

  • PDF

Developing Automatic Lens Module Assembly System Using 3D Simulation (3D 시뮬레이션을 활용한 렌즈모듈 자동화조립시스템 개발)

  • Moon, Dug-Hee;Lee, Jun-Seok;Baek, Seung-Geun;Zhang, Bing-Lin;Kim, Yeong-Gyoo
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.2
    • /
    • pp.65-74
    • /
    • 2007
  • Virtual manufacturing (VM) is a powerful technology for developing a new product, new equipment and new manufacturing system, and three-dimensional (3D) simulation is a core technology in VM. 3D simulation involves both mechanical simulation and discrete event simulation. This paper introduces a case study of implementing 3D simulation for developing an automatic assembly line in a Korean optical factory. This factory produces a lens module that is the part of a phone-camera. 3D simulation technology is applied from the early stage of development. In the conceptual design and the initial design phases for individual equipment, 3D mechanical simulation using $CATIA^{(R)}$ and $IGRIP^{(R)}$ is conducted. 3D discrete event simulation with $QUEST^{(R)}$ is applied to the detailed design of the equipment and of the whole system. The focus of the simulation is to verify the technical and economical feasibility of the new automatic system. As a result, the takt time is reduced to the quarter of the manual system, and the number of workers in a line is reduced tremendously.

  • PDF

The Die Design for Semi-Solid Forging Process of Computer Simulation and Experimental Investigation of Filling Phenomenon (컴퓨터 시뮬레이션을 이용한 반용융 단조공정의 금형설계 및 충전현상의 실험적 검토)

  • 이동훈;강충길
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.373-382
    • /
    • 2001
  • Die design by computer simulation has some advantages compared with the conventional method which has performed by designer's experiences and trials and errors. The die filling and solidification process of thixoforming process were simulated by MAGMAsoft/thixo module. Furthermore, the die design for thixoforming was performed with the various geometry shape. The effect of designed gate dimension on filling phenomenon was estimated by filling simulation. The calculated results was compared with experimental data. The free surface phenomenon obtained by experiment have good agreement with computer simulation results. The solidification effect much as prosity and shrinkage for designed semi-solid forging die had been predicted by computer simulation. The designed die for semi-solid forging had been applied to produce of the frame part which is used to airconditious system.

  • PDF

Performance analyses of naval ships based on engineering level of simulation at the initial design stage

  • Jeong, Dong-Hoon;Roh, Myung-Il;Ham, Seung-Ho;Lee, Chan-Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.446-459
    • /
    • 2017
  • Naval ships are assigned many and varied missions. Their performance is critical for mission success, and depends on the specifications of the components. This is why performance analyses of naval ships are required at the initial design stage. Since the design and construction of naval ships take a very long time and incurs a huge cost, Modeling and Simulation (M & S) is an effective method for performance analyses. Thus in this study, a simulation core is proposed to analyze the performance of naval ships considering their specifications. This simulation core can perform the engineering level of simulations, considering the mathematical models for naval ships, such as maneuvering equations and passive sonar equations. Also, the simulation models of the simulation core follow Discrete EVent system Specification (DEVS) and Discrete Time System Specification (DTSS) formalisms, so that simulations can progress over discrete events and discrete times. In addition, applying DEVS and DTSS formalisms makes the structure of simulation models flexible and reusable. To verify the applicability of this simulation core, such a simulation core was applied to simulations for the performance analyses of a submarine in an Anti-SUrface Warfare (ASUW) mission. These simulations were composed of two scenarios. The first scenario of submarine diving carried out maneuvering performance analysis by analyzing the pitch angle variation and depth variation of the submarine over time. The second scenario of submarine detection carried out detection performance analysis by analyzing how well the sonar of the submarine resolves adjacent targets. The results of these simulations ensure that the simulation core of this study could be applied to the performance analyses of naval ships considering their specifications.

Development of an Escalator Simulation Program for a Designer (설계자를 위한 에스컬레이터 전용 시뮬레이션 프로그램 개발)

  • 서종휘
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.3
    • /
    • pp.29-37
    • /
    • 1999
  • When an escalator is developed or modified to improve its performance, estimation of dynamic characteristics of the escalator is required. But modeling of the escalator for a design purpose is very difficult and time consuming. Especially, it is very difficult for a designer to use the simulation model during design process because preparing a proper model takes time and also the designer needs to know how to use the simulation program. In order to solver these problems, a graphic user interface program that can predict dynamic characteristics of an escalator is developed for the designer. Since this program makes the necessary escalator model for simulation for itself, the designer does not need to know how to use the simulation program while design is in progress. In this paper, a designer oriented interface program is developed and an example is presented to show the effectiveness of the developed program.

  • PDF