• Title/Summary/Keyword: dermal irritation study

Search Result 30, Processing Time 0.025 seconds

Skin Safety Evaluation of Pectin Lyase-modified Red Ginseng Extract (GS-E3D) (홍삼가수분해농축액(GS-E3D)의 피부 안전성 평가)

  • Pyo, Mi Kyung;Lee, Gyeong Hee;Cha, Seon Woo;Park, Ki Young;Lee, Ki Moo
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.3
    • /
    • pp.246-254
    • /
    • 2018
  • Pectin lyase-modified red ginseng extract (GS-E3D) is a newly developed ginsenoside Rd-enriched ginseng extract. This study was designed to investigate the skin safety of GS-E3D. Single oral toxicity, single dermal toxicity, bovine corneal opacity and permeability (BCOP) assay, skin irritation test with $SkinEthic^{TM}$ human epidermis model, skin sensitization local lymph node assay, and human patch test, were examined. The oral and dermal $LD_{50}$ value of GS-E3D was over 2,000 mg/kg in rats. GS-E3D was identified as a non-irritant to skin in BCOP assay, human epidermis models, and patch test from the 32 human subjects. The skin sensitization potential of GS-E3D was less than 25% in local lymph node assay. These results indicate that GS-E3D can be used as a safe ingredient without adverse effects in various skin care products.

Study on Local Irritation in Rabbits and Micronucleus Test in Mice with YHB216 (YHB216의 토끼에서 국소독성시험 및 마우스에서 소핵시험)

  • 강민정;김미영;박명규;김봉태;안경규;최연식;문병석;이종욱
    • Toxicological Research
    • /
    • v.18 no.1
    • /
    • pp.79-85
    • /
    • 2002
  • YHB216 is one of new recombinant human erythropoietins (rHu-EPO) developed by Yuhan Research Institute. The rHu-EPO products are widely being used for the treatment of various types of anemia. As a series of safety studies on YHB216, we performed the local irritation test (dermal & ocular application) in male New Zealand White rabbits and micronucleus test in male ICR mice. In the skin irritation test, 0.5 ml of YHB216 10,000 IU/ml solution was applied to the back skin of rabbits for 24 hours and sub-sequent observation was performed. There was no induced response after the treatment and the primary irritation index (P.I.I.) was‘0’. In the eye irritation test, 0.1 ml of YHB216 10,000 IU/mL solution was instilled into the conjunctiva of the eye. No treatment-related reaction was observed at the cornea, iris, and conjunctiva. In the micronucleus test, YHB216 was administered intravenously to male mice (6 mice per group) at dose levels of 0, 6,250, 12,500, and 25,000 IU/kg. Bone marrow cells were collected at 24 hours after the treatment. YHB216 treated groups showed no significant difference in the P/N (polychromatic erythrocyte/ normochromatic erythrocyte) ratio and in the number of micronucleated polychromatic erythrocyte com-pared with the control. In conclusion, YHB216 was found to be a non-irritating material up to 10,000 IU/ml in the local irritation test and to be a non-mutagen up to 25,000 IU/kg in the micronucleus test.

Safety, Efficacy, and Physicochemical Characterization of Tinospora crispa Ointment: A Community-Based Formulation against Pediculus humanus capitis

  • Torre, Gerwin Louis Tapan Dela;Ponsaran, Kerstin Mariae Gonzales;de Guzman, Angelica Louise Dela Pena;Manalo, Richelle Ann Mallapre;Arollado, Erna Custodio
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.4
    • /
    • pp.409-416
    • /
    • 2017
  • The high prevalence of pediculosis capitis, commonly known as head lice (Pediculus humanus capitis) infestation, has led to the preparation of a community-based pediculicidal ointment, which is made of common household items and the extract of Tinospora crispa stem. The present study aimed to evaluate the safety, efficacy, and physicochemical characteristics of the T. crispa pediculicidal ointment. The physicochemical properties of the ointment were characterized, and safety was determined using acute dermal irritation test (OECD 404), while the efficacy was assessed using an in vitro pediculicidal assay. Furthermore, the chemical compounds present in T. crispa were identified using liquid-liquid extraction followed by ultra-performance liquid chromatography quadruple time-of-flight mass spectrometric (UPLC-qTOF/MS) analysis. The community-based ointment formulation was light yellow in color, homogeneous, smooth, with distinct aromatic odor and pH of $6.92{\pm}0.09$. It has spreadability value of $15.04{\pm}0.98g{\cdot}cm/sec$ and has thixotropic behavior. It was also found to be non-irritant, with a primary irritation index value of 0.15. Moreover, it was comparable to the pediculicidal activity of the positive control $Kwell^{(R)}$, a commercially available 1% permethrin shampoo (P>0.05), and was significantly different to the activity of the negative control ointment, a mixture of palm oil and candle wax (P<0.05). These findings suggested that the community-based T. crispa pediculicidal ointment is safe and effective, having acceptable physicochemical characteristics. Its activity can be attributed to the presence of compounds moupinamide and physalin I.

Toxicological Evaluation of Chitosan Cross-linked Collagen-GAG Matrix (CCGM) In vitro and In vivo (Chitosan Cross-linked Collagen-GAG Matrix(CCGM)의 독성학적 고찰)

  • Lee, Hae-Yul;Kim, Dong-Hwan;Cho, Hyun;Ahn, Byoung-Ok;Kang, Soo-Hyung;Kim, Won-Bae
    • Toxicological Research
    • /
    • v.16 no.1
    • /
    • pp.17-25
    • /
    • 2000
  • Chitosan cross-linked collagen-glycosaminoglyan (CCGM) is an artificial skin substitute made to form a sponge like dimensional matrix. It can be used to facilitate reconstruction of dermal tissue when applied on large wounds such as severe burns. In order to study the toxicological effects of CCGM the cytotoxicity, local irritation and skin sensitization test were carried out according to the standards of ISO 10993. In the cytotoxicity test utilizing LDH and MTT test, both the CCGM and its extract had no toxicity of Balb/c 3T3 cells. The local irritatioin test on rabbit skin demonstrated that CCGM did not promote any harmful when directly applied on skin. In addition, it did not elicit any allergic reaction in the guinea pig maximization test. Based on these results, it is suggested that CCGM is a material without cytotoxicity, local irritation and allergenicity.

  • PDF

A Review on the Classification of Skin Toxicity Hazards Due to Skin Contact with Chemical Substances (화학물질 피부접촉에 의한 피부독성 유해성 분류에 관한 고찰)

  • Kwon, Buhyun;Jo, Jihoon;Lee, Dohee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.2
    • /
    • pp.175-189
    • /
    • 2018
  • Objectives: In this study, we analyze statistics on industrial accidents caused by chemical skin contact and provide skin toxicity hazard information on the related domestic system and circulation volumes. Methods and Results: We analyzed occupational fatalities and skin diseases caused by chemical leaks and contact from 2007 to 2016(10 years) and surveyed data on occupational skin diseases using the 2014 work environment survey data. The NIOSH Skin Notation Profiles for 57 chemical substances, which are provided to prevent occupational skin diseases, were searched and hazard information on skin contact with chemical substances was classified. In order to identify skin toxicity information among domestically distributed and legally regulated substances and to investigate skin-toxic substances, MSDS basic data on 19,740 chemical substances provided on the homepage of Korea Occupational Safety & Health Agency were searched. Acute toxicity(dermal) category 1-4 substances totaled 1,020, and the number of chemical substances classified as category 1 and 2 substances were 135 and 137, respectively. In the chemical substances prescribed by the Ministry of Employment and Labor, 173 substances were classified into acute toxicity(dermal) categories 1-4, 58 of which correspond to category 1 or 2. Conclusions: Within the present range of industrial accidents, the proportion of skin diseases due to contact with chemicals is not high. However, there is always a risk of occupational skin diseases due to increasing chemicals and due to the use of new chemicals. It is hoped that this information will be used by workplace safety and health officials and health and safety experts to prevent acute toxity(dermal) due to chemical skin contact.

Use of Cultured Bioartificial Skins as in vitro Models for Cutaneous Toxicity Testing (생인공피부를 이용한 독성 반응 시험)

  • Yang, Eun-Kyung;Yoon, Hee-Hoon;Park, Jung-Keug;Park, Soo-Nam;Ko, Kang-Il;Kim, Ki-Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.26 no.1
    • /
    • pp.17-40
    • /
    • 2000
  • Cytotoxicity assays using artificial skins have been proposed as in vitro alternatives to minimize animal ocular and dermal irritation testing. Accordingly, the responses of artificial skins to the well-characterized chemical irritants toluene, glutaraldehyde, and sodium lauryl sulfate (SLS), and the nonirritant polyethylene glycol were studied. The evaluation of the irritating and non-irritating test chemicals was also compared with the responses observed in human dermal fibroblasts and human epidermal keratinocytes grown in a monolayer culture. The responses monitored included an MTT mitochondrial functionality assay. In order to better understand the local mechanisms involved in skin damage and repair, the production of several mitogenic proinflammatory mediators, interleukin-l$\alpha$, 12-HETE, and 15-HETE, was also investigated. Dose-dependent increases in the levels of かIn and the HETEs were observed in the underlying medium of the skin systems exposed to the two skin irritants, glutaraldehyde and SLS. The results of the present study show that both human artificial skins can be used as efficient in vitro testing models for the evaluation of skin toxicity and for screening contact skin irritancy.

  • PDF

Toxicity Evaluation of Asarum Sieboldii Extract for Human's Safety (인체안전성을 위한 족두리풀 천연추출물의 독성평가)

  • Kim, Young Hee;Jo, Chang Wook;Hong, Jin Young;Lee, Jeung Min;Kim, Soo Ji;Jeong, So Young
    • Journal of Conservation Science
    • /
    • v.33 no.4
    • /
    • pp.255-266
    • /
    • 2017
  • Chemically derived pesticides have been used to prevent biological damage to domestic cultural property. However, their use is gradually being restricted due to the harmful effects on the human body and environment. Therefore, there is a growing interest in the search for new antifungal biopharmaceuticals whose safety has been confirmed by toxicity evaluation through animal experiments. This paper presents methods of toxicity evaluation of natural biocides using Sprague-Dawley rats and New Zealand White (NZW) rabbits. Safety of the natural biocide extract of Asarum sieboldii was evaluated using single-dose oral and dermal toxicity tests in Sprague-Dawley rats, and eye and skin irritation tests in NZW rabbits. The extract has proven antimicrobial and insecticidal activities against wood-rotting fungi and termites. After single oral administration to rats, the $LD_{50}$ values were determined to be over 4,000 and 2,000 mg/kg for males and females, respectively. After single dermal administration to rats, the $LD_{50}$ values exceeded 10,000 mg/kg for both males and females. The extract was identified to be non-irritant to the rabbit eye, and only slightly irritant to the rabbit skin. In this study, we confirmed the safety of the A sieboldii extract through animal testing. Due to the harmfulness of humidifier disinfectants, focus is on the safety of chemical pesticides, and toxicity evaluation is suggested as the basic method for hazard evaluation.

In Vivo Evaluation of Chondroitin Sulfates from Midduk (Styela clava) and Munggae Tunics (Halocynthia roretzi) as a Cosmetic Material (In vivo에 의한 미색류 콘드로이틴황산의 기능성 화장품 소재로서의 가능성)

  • 김배환;안삼환;최병대;강석중;김영림;이후장;오명주;정태성
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.4
    • /
    • pp.641-645
    • /
    • 2004
  • Crude chondroitin sulfates extracted from midduck tunics (Styela clava) and munggae tunics (Halocynthia roretzi) were examined in vivo in order to be utilized as a cosmetic material which was followed by an in vitro assay. Examinations, such as acute oral toxicity, skin sensitization, acute eye irritation, and primary skin irritation, were peformed with a variety of laboratory animals. Phototoxic and photosensitization tests were not conducted since all chondroitin sulfates failed to absorb U.V. light at the range of 280 to 420 nm. In acute dermal and eye irritation, both specific clinical signs and dead cases were not demonstrated during the test period, but crude chondroitin sulfates from midduck and munggae tunics, and standard chondroitin sulfate from bovine trachea were showed 2.5, 1 and 1.25 of acute ocular irritation index (A.O.I.), respectively. In the case of skin sensitization, crude chondroitin sulfate from midduck tunics exhibited neither specific clinical signs nor dead cases in the entire course of the examination. While in acute oral toxicity, crude chondroitin sulfates from both midduck and munggae tunics found neither specific clinical signs nor dead cases during the test, and LD50 was suspected to be over 2 g/kg. Based on this study, it was proven that crude chondroitin sulfates from either midduck or munggae tunics can be used safely as a cosmetic material.

The Protective Effects of Cornus walteri Wanger Leaves against UV Induced Cellular Damage in Human Fibroblast (자외선에 의한 세포손상에 대한 말채나무잎의 보호효과)

  • Park, Hyun-Chul;Jung, Taek Kyu;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Cornus walteri Wanger has been used in folk medicine in Korea. Ultraviolet (UV) irradiation has been known as a major cause of photo damage in skin. In the present study, research on how to cure damaged cells by UVB was conducted using an extract of Cornus walteri Wanger leaves (CWE), which was treated with an enzyme. CWE was applied to human dermal fibroblasts (HDFs) affected by UVB. UVB-irradiated HS68 cells showed increased caspase-3 activity, phosphorylation of p53, ${\gamma}H2AX$, cyclobutane pyrimidine dimers (CPDs) formation, and DNA fragmentation compared with non-irradiated cells. However, all these effects were inhibited by treatment with CWE for 12 h after UVB irradiation. Furthermore, CWE has proved not to cause primary skin irritation through the human patch test. Collectively, these results suggest that CWE could be a new potential candidate as photoprotective agent against UVB-induced cellular damage in HDFs.

Paraquat Poisoning by Skin Absorption (파라콰트에 의한 피부 손상의 임상적 고찰)

  • Yang Jong Oh;Gil Hyo Wook;Lee Eun Young;Hong Sae Yong
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.2 no.2
    • /
    • pp.101-105
    • /
    • 2004
  • Purpose: Paraquat is the most commonly used herbicide in Korea. Exposure to paraquat through the skin has resulted in local irritation or inflammation of varying degree, sometimes severe. The purpose of this study was to review the patients with paraquat poisoning by skin absorption. Methods: We analysed retrospectively the clinical and laboratory findings of 45 patients with paraquat poisoning after dermal exposure, who were admitted to Soonchunhyang University Cheonan Hospital from January 1999 to December 2003. Results: Among 870 cases of paraquat poisoning, 45 cases were exposed to paraquat through the skin. The peak incidence was the fifth decade($40\%$). The clinical symptoms were pain, pruritus, nausea, and vomiting. The major skin lesions were generalized vesicobullae and necrotic erosion in face, scrotum, trunk, upper and lower extremities and etc. All patients were survived after skin contact or inhalation of paraquat. Conclusion: This study illustrates the extreme toxicity of paraquat and demonstrates that lethal quantities of paraquat may be absorbed if repeated exposure to it. Stricter precautions, including the mandatory use of protective clothing, should be recommended whenever this material is used.

  • PDF