• Title/Summary/Keyword: derivatization

Search Result 296, Processing Time 0.034 seconds

Simultaneous Analysis Method of BPA, BPF, BADGE, BFDGE and Their Degradation Products in Canned Foods and Food Simulants by HPLC (HPLC를 이용한 캔 식품 및 식품 유사용매 중 BPA, BPF, BADGE, BFDGE 및 분해산물의 동시분석법)

  • Choi, Jae-Chun;Kyung, Suk-Hun;Lee, Gun-Tack;Lee, Kwang-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.174-179
    • /
    • 2002
  • A simple and sensitive analysis method based on reverse phase (RP) HPCL with flourescence detector was developed for simultaneous determination of bisphenol A (BPA), bisphenol F (BPF), bisphenol A diglycidyl ether (BADGE), bisphenol F diglycidyl ether (BFDGE), and their degradation products, $BADGE{\cdot}H_2O$, $BADGE{\cdot}2H_2O$, $BFDGE{\cdot}H_2O$, $BFDGE{\cdot}2H_2O$, $BADGE{\cdot}HCl{\cdot}H_2O$, $BADGE{\cdot}HCl$, $BADGE{\cdot}2HCl$, $BFDGE{\cdot}HCl{\cdot}H_2O$, $BFDGE{\cdot}HCl$ and $BFDGE{\cdot}2HCl$, which were hydrolyzed and chlorinated forms of BADGE and BFDGE, in canned foods and food simulants. These compounds were identified by GC/MSD with $MSTFA-NH_4I-DTE$ derivatization. Recovery study was performed at each 100 ng/mL levels of BPA, BPF, BADGE and BFDGE added to canned foods and food simulants. This method was resulted in recovery of $90{\sim}114%$ with relative standard deviation of $4.1{\sim}7.0%$, detection limits of $6{\sim}11$ ng/mL and quantitation limits of $12{\sim}18\;ng/mL$. Calibration curves were linear with correlatin coefficients of 0.997 for BPF, 0.996 for BPA, 0.9987 for BFDGE, and 0.9989 for BADGE.

A Study on Contents of Vitamin K1 in Local Agricultural Products (지역농산물의 비타민 K1 함량 조사)

  • Lee, A Reum;Kim, Joo Hee;Park, Jae-Ho;Kim, Youngho;Hong, Eui Yon;Kim, Haeng-Ran;Choi, Youngmin;Lee, Junsoo;Eom, Hyun-Ju
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.3
    • /
    • pp.301-306
    • /
    • 2016
  • Vitamin K (phylloquinone) is an essential cofactor in the synthesis of active blood-clotting factors II, VII, IX and X. Deficiency of vitamin K leads to inadequate activity of these factors, resulting in bleeding. In this study, we investigated vitamin $K_1$ content of agricultural products that are widely and specifically grown in Korea including 9 leaves and vegetables, 16 fruits, and 11 cereals and specialty crops. Vitamin $K_1$ analysis of the agro-samples was by a validated, modified, reversed phase-HPLC method with fluorescence detection after post-column derivatization. The vitamin $K_1$ content ranged from 1.83 to $682.73{\mu}g$/100 g in leaves and vegetables, 0.17 to $28.22{\mu}g$/100 g in fruits, and ND to $279{\mu}g$/100 g in cereals and specialty crops. Among the 36 samples, high content of vitamin $K_1$ were found in Gugija (Lycium chinense Miller) leaves (average $682.73{\mu}g$/100 g) and Hansan ramie leaves (average $423.12{\mu}g$/100 g); however, mushroom, amaranth and Chinese artichoke showed no detectable levels. The results of ourstudy provide reliable vitamin $K_1$ content of Korean grown agricultural products that expand nutritional information and food composition database.

Characterization of Traditional Korean Unifloral Honey Based on the Mono-, Di-, and Trisaccharides (한국산 벌꿀의 밀원별 단당, 이당 및 삼당류의 정량 특성)

  • Jang, Eun-Sook;Kim, In-Suk;Lee, Eun-jin;Seo, Hyun-Sun;Lee, Hye-joung;Kim, Eun;Kim, Kyung-Tae;Kim, Jong-Bae
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Sugar profiles of 45 Korean honey samples (15 acacia, 15 multi-floral, 10 chestnut, and 5 artificial honey samples), which are commercially available in the Korean markets, were analyzed using gas chromatography/mass spectrometry (GC/MS) through TMS-oxime and TMS-methoxime derivatization. The average invert sugar contents in acacia, multi-floral, chestnut, and artificial honey samples were $71.2{\pm}1.05$, $68.7{\pm}3.26$, $63.2{\pm}1.85$, and $68.0{\pm}2.10%$, respectively. Fourteen disaccharides were detected from the samples, and the average content of major disaccharides was higher in order of turanose, maltulose, maltose, trehalulose, kojibiose, isomaltose, and nigerose. The average content of total disaccharides was highest in chestnut and lowest in acacia. Seven trisaccharides were detected from the samples, and the average content of trisaccharides was the highest in artificial honeys, which had high erlose content. The total content of disaccharides and trisaccharides was highest ($16.0{\pm}2.03%$) in chestnut honey and lowest ($9.70{\pm}1.75%$) in acacia honey.

Investigation of Unintentionally Hazardous Substance in Commercial Herbs for Food and Medicine (유통 식약공용농산물 중 비의도적 유해물질 오염도 조사)

  • Seo, Mi-Young;Kim, Myung-Gil;Kim, Jae-Kwan;Jang, Mi-Kyung;Lee, Yu-Na;Ku, Eun-Jung;Park, Kwang-Hee;Yoon, Mi-Hye
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.6
    • /
    • pp.453-459
    • /
    • 2018
  • This study was performed to investigate the contamination levels of heavy metals (such as lead, cadmium, arsenic and mercury) and aflatoxin (such as $B_1$, $B_2$, $G_1$ and $G_2$) in commercial herbs for food and medicine. The concentrations of the heavy metals were measured by the ICP-MS and a mercury analyzer. The aflatoxins were analyzed by a HPLC-florescence coupled with photochemical derivatization. The detection ranges of the lead, cadmium, arsenic and mercury were found to be 0.006~4.088 mg/kg, 0.002~2.150 mg/kg, ND~0.610 mg/kg and ND~0.0139 mg/kg respectively. Among the total samples, the 3 samples (2.6%) were not suitable for the specification of cadmium by the MFDS (Ministry of Food and Drug Safety). The 13 samples of the total 117 samples were aflatoxin positive (11.1%). The amount of aflatoxin $G_1$ was $0.7834{\mu}g/kg$ in the Puerariae Radix and aflatoxin $G_2$ were $0.3517{\mu}g/kg$, $0.4881{\mu}g/kg$ in two samples of the Glycyrrhizae Radix et Rhizoma, respectively. The aflatoxins $B_2$ and $G_1$ were simultaneously detected in the 10 Angelicae Gigantis Radix. The detection ranges of aflatoxins $B_2$ and $G_1$ were $0.2324{\sim}1.0358{\mu}g/kg$ and $0.7552{\sim}1.6545{\mu}g/kg$ respectively in Angelicae Gigantis Radix. The results of the current study suggest that continuous monitoring is needed for the proactive management of commercial herbs for food and medicine safety.

A Monitoring of Aflatoxins in Commercial Herbs for Food and Medicine (식·약공용 농산물의 아플라톡신 오염 실태 조사)

  • Kim, Sung-dan;Kim, Ae-kyung;Lee, Hyun-kyung;Lee, Sae-ram;Lee, Hee-jin;Ryu, Hoe-jin;Lee, Jung-mi;Yu, In-sil;Jung, Kweon
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.4
    • /
    • pp.267-274
    • /
    • 2017
  • This paper deals with the natural occurrence of total aflatoxins ($B_1$, $B_2$, $G_1$, and $G_2$) in commercial herbs for food and medicine. To monitor aflatoxins in commercial herbs for food and medicine not included in the specifications of Food Code, a total of 62 samples of 6 different herbs (Bombycis Corpus, Glycyrrhizae Radix et Rhizoma, Menthae Herba, Nelumbinis Semen, Polygalae Radix, Zizyphi Semen) were collected from Yangnyeong market in Seoul, Korea. The samples were treated by the immunoaffinity column clean-up method and quantified by high performance liquid chromatography (HPLC) with on-line post column photochemical derivatization (PHRED) and fluorescence detection (FLD). The analytical method for aflatoxins was validated by accuracy, precision and detection limits. The method showed recovery values in the 86.9~114.0% range and the values of percent coefficient of variaton (CV%) in the 0.9~9.8% range. The limits of detection (LOD) and quantitation (LOQ) in herb were ranged from 0.020 to $0.363{\mu}g/kg$ and from 0.059 to $1.101{\mu}g/kg$, respectively. Of 62 samples analyzed, 6 semens (the original form of 2 Nelumbinis Semen and 2 Zizyphi Semen, the powder of 1 Nelumbinis Semen and 1 Zizyphi Semen) were aflatoxin positive. Aflatoxins $B_1$ or $B_2$ were detected in all positive samples, and the presence of aflatoxins $G_1$ and $G_2$ were not detected. The amount of total aflatoxins ($B_1$, $B_2$, $G_1$, and $G_2$) in the powder and original form of Nelumbinis Semen and Zizyphi Semen were observed around $ND{\sim}21.8{\mu}g/kg$, which is not regulated presently in Korea. The 56 samples presented levels below the limits of detection and quantitation.

Stereospecific Analysis of the Molecular Species of the Triacylglycerols Containing Conjugate Trienoic Acids by GLC-Mass Spectrometry in Combination with Deuteration and Pentafluorobenzyl Derivatization Techniques (중수소화(重水素化), Pentafluorobenzyl화(化)와 GLC-Mass Spectrometry에 의한 Conjugate Trienoic Acid함유(含有) Triacylglycerol 분자종(分子種)의 입체특이적 분석(分析))

  • Woo, Hyo-Kyeng;Kim, Seong-Jin;Joh, Yong-Goe
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.214-232
    • /
    • 2001
  • CTA ester bonds in TG molecules were not attacked by pancreatic lipase and lipases produced by microbes such as Candida cylindracea, Chromobacterium viscosum, Geotricum candidium, Pseudomonas fluorescens, Rhizophus delemar, R. arrhizus and Mucor miehei. An aliquot of total TG of all the seed oils and each TG fraction of the oils collected from HPLC runs were deuterated prior to partial hydrolysis with Grignard reagent, because CTA molecule was destroyed with treatment of Grignard reagent. Deuterated TG (dTG) was hydrolyzed partially to a mixture of deuterated diacylglycerols (dDG), which were subsequently reacted with (S)-(+)-1-(1-naphthyl)ethyl isocyanate to derivatize into dDG-NEUs. Purified dDG-NEUs were resolved into 1, 3-, 1, 2- and 2, 3-dDG-NEU on silica columns in tandem of HPLC using a solvent of 0.4% propan-1-o1 (containing 2% water)-hexane. An aliquot of each dDG-NEU fraction was hydrolyzed and (fatty acid-PFB ester). These derivatives showed a diagnostic carboxylate ion, $(M-1)^{-}$, as parent peak and a minor peak at m/z 196 $(PFB-CH_{3})^{-}$ on NICI mass spectra. In the mass spectra of the fatty acid-PFB esters of dTGs derived from the seed oils of T. kilirowii and M. charantia, peaks at m/z 285, 287, 289 and 317 were observed, which corresponded to $(M-1)^{-}$ of deuterized oleic acid ($d_{2}-C_{18:0}$), linoleic acid ($d_{4}-C_{18:0}$), punicic acid ($d_{6}-C_{18:0}$) and eicosamonoenoic acid ($d_{2}-C_{20:0}$), respectively. Fatty acid compositions of deuterized total TG of each oil measured by relative intensities of $(M-1)^-$ ion peaks were similar with those of intact TG of the oils by GLC. The composition of fatty acid-PFB esters of total dTG derived from the seed oils of T. kilirowii are as follows; $C_{16:0}$, 4.6 mole % (4.8 mole %, intact TG by GLC), $C_{18:0}$, 3.0 mole % (3.1 mole %), $d_{2}C_{18:0}$, 11.9 mole % (12.5 mole %, sum of $C_{18:1{\omega}9}$ and $C_{18:1{\omega}7}$), $d_{4}-C_{18:0}$, 39.3 mole % (38.9 mole %, sum of $C_{18:2{\omega}6}$ and its isomer), $d_{6}-C_{18:0}$, 41.1 mole % (40.5 mole %, sum of $C_{18:3\;9c,11t,13c}$, $C_{18:3\;9c,11t,13r}$ and $C_{18:3\;9t,11t,13c}$), $d_{2}-C_{20:0}$, 0.1 mole % (0.2 mole % of $C_{20:1{\omega}9}$). In total dTG derived from the seed oils of M. charantia, the fatty acid components are $C_{16:0}$, 1.5 mole % (1.8 mole %, intact TG by GLC), $C_{18:0}$, 12.0 mole % (12.3 mole %), $d_{2}-C_{18:0}$, 16.9 mole % (17.4 mole %, sum of $C_{18:1{\omega}9}$), $d_{4}-C_{18:0}$, 11.0 mole % (10.6 mole %, sum of $C_{18:2{\omega}6}$), $d_{6}-C_{18:0}$, 58.6 mole % (57.5 mole %, sum of $C_{18:3\;9c,11t,13t}$ and $C_{18:3\;9c,11t,13c}$). In the case of Aleurites fordii, $C_{16:0}$; 2.2 mole % (2.4 mole %, intact TG by GLC), $C_{18:0}$; 1.7 mole % (1.7 mole %), $d_{2}-C_{18:0}$; 5.5 mole % (5.4 mole %, sum of $C_{18:1{\omega}9}$), $d_{4}-C_{18:0}$ ; 8.3 mole % (8.5 mole %, sum of $C_{18:2{\omega}6}$), $d_{6}-C_{18:0}$; 82.0 mole % (81.2 mole %, sum of $C_{18:3\;9c,11t,13t}$ and $C_{18:3 9c,11t,13c})$. In the stereospecific analysis of fatty acid distribution in the TG species of the seed oils of T. kilirowii, $C_{18:3\;9c,11t,13r}$ and $C_{18:2{\omega}6}$ were mainly located at sn-2 and sn-3 position, while saturated acids were usually present at sn-1 position. And the major molecular species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})_{2}$ and $(C_{18:1{\omega}9})(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})$ were predominantly composed of the stereoisomer of $sn-1-C_{18:2{\omega}6}$, $sn-2-C_{18:3\;9c,11t,13c}$, $sn-3-C_{18:3\;9c,11t,13c}$, and $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:2{\omega}6}$, $sn-3-C_{18:3\;9c,11t,13c}$, respectively, and the minor TG species of $(C_{18:2{\omega}6})_{2}(C_{18:3\;9c,11t,13c})$ and $ (C_{16:0})(C_{18:3\;9c,11t,13c})_{2}$ mainly comprised the stereoisomer of $sn-1-C_{18:2{\omega}6}$, $sn-2-C_{18:2{\omega}6}$, $sn-3-C_{18:3\;9c,11t,13c}$ and $sn-1-C_{16:0}$, $sn-2-C_{18:3\;9c,11t,13c}$, $sn-3-C_{18:3\;9c,11t,13c}$. The TG of the seed oils of Momordica charantia showed that most of CTA, $C_{18:3\;9c,11t,13r}$, occurred at sn-3 position, and $C_{18:2{\omega}6}$ was concentrated at sn-1 and sn-2 compared to sn-3. Main TG species of $(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$ and $(C_{18:0})(C_{18:3\;9c,11t,13t})_{2}$ were consisted of the stereoisomer of $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ and $sn-1-C_{18:0}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$, respectively, and minor TG species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})_{2}$ and $(C_{18:1{\omega}9})(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})$ contained mostly $sn-1-C_{18:2{\omega6}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ and $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:2{\omega}6}$, $sn-3-C_{18:3\;9c,11t,13t}$. The TG fraction of the seed oils of Aleurites fordii was mostly occupied with simple TG species of $(C_{18:3\;9c,11t,13t})_{3}$, along with minor species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13t})_{2}$, $(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$ and $(C_{16:0})(C_{18:3\;9c,11t,13t})$. The sterospecific species of $sn-1-C_{18:2{\omega}6}$, $sn-2-C_{18:3\;9c,11t,13t}$, sn-3-C_{18:3\;9c,11t,13t}$, $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ and $sn-1-C_{16;0}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ are the main stereoisomers for the species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13t})_2$, $(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$ and $(C_{16:0})(C_{18:3\;9c,11t,13t})$, respectively.