• Title/Summary/Keyword: derivative value

Search Result 299, Processing Time 0.031 seconds

Modeling and Control of Welding Mobile Robot for the Tracking of Lattice Type Welding Seam (격자형 용접선 추적을 위한 용접 이동로봇의 모델링 및 제어)

  • Lee, Gun-You;Suh, Jin-Ho;Oh, Myung-Suk;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.923-928
    • /
    • 2003
  • This paper presents the motion control of a mobile robot with arc sensor for lattice type welding. Its dynamic equation and motion control method for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven along a straight line or comer. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider controls. For the torch slider control, the proportional integral derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the comer with range of $90^{\circ}$ constrained to the welding speed. The proposed control methods are proved through simulation results and the results have proved that the mobile robot has enough ability to apply the lattice type welding line.

  • PDF

Modeling and Motion Control of Mobile Robot for Lattice Type Welding

  • Jeon, Yang-Bae;Kim, Sang-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.83-93
    • /
    • 2002
  • This paper presents a motion control method and its simulation results of a mobile robot for a lattice type welding. Its dynamic equation and motion control methods for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven for following straight line or curve. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider control. For the torch slider control, the proportional-integral-derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the corner with range of 90$^{\circ}$ constrained to the welding speed. The proposed control methods are proved through simulation results and these results have proved that the mobile robot has enough ability to apply the lattice type welding line.

Shape Design Sensitivity Analysis for Interface Problem in Axisymmetric Elasticity

  • Choi, Joo-Ho;Lee, Boo-Youn;Han, Jung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.197-206
    • /
    • 2000
  • A boundary integral equation method in the shape design sensitivity analysis is developed for the elasticity problems with axisymmetric non-homogeneous bodies. Functionals involving displacements and tractions at the zonal interface are considered. Sensitivity formula in terms of the interface shape variation is then derived by taking derivative of the boundary integral identity. Adjoint problem is defined such that displacement and traction discontinuity is imposed at the interface. Analytic example for a compound cylinder is taken to show the validity of the derived sensitivity formula. In the numerical implementation, solutions at the interface for the primal and adjoint system are used for the sensitivity. While the BEM is a natural tool for the solution, more generalization should be made since it should handle the jump conditions at the interface. Accuracy of the sensitivity is evaluated numerically by the same compound cylinder problem. The endosseous implant-bone interface problem is considered next as a practical application, in which the stress value is of great importance for successful osseointegration at the interface. As a preliminary step, a simple model with tapered cylinder is considered in this paper. Numerical accuracy is shown to be excellent which promises that the method can be used as an efficient and reliable tool in the optimization procedure for the implant design. Though only the axisymmetric problem is considered here, the method can be applied to general elasticity problems having interface.

  • PDF

Robust PID $\times$ (n-1) Stage PD Controller

  • Numsomran, Arjin;Julsereewong, Prasit;Ukakimaparn, Prapart;Trisuwannawat, Thanit;Tirasesth, Kitti
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.298-301
    • /
    • 1999
  • This paper presents a design technique based on the root locus method fur a class of $n^{th}$ order plants using PID (Proportional-Integral-Derivative) x (n-1) stage PD controller. It is intended to satisfy both transient and steady state response specifications. This controller can be used instead of a conventional PID controller for the higher order plants to obtain better performances. The controlled system is approximated as a stable and robust second order controlled system. Only adjusting the controller gain, the desired performances of the controlled system are satisfied. For the stable plant including the plant with small dead time, the controlled system is made robustly stable. In case of the unstable plant, when the controller gain is adjusted higher than the critical value, the unstable plant can also be made stable. Robustness properties given by this controller proposed in this paper have also been demonstrated by numerical examples.

  • PDF

Constituents of Paulownia tomentosa Stem(III): The Crystal Structure of Methyl 5-Hydroxy-dinaphtho[1,2-2',3]furan-7,12-dione-6-carboxylate

  • Park, Il-Yeong;Kim, Bak-Kwang;Kim, Yang-Bae
    • Archives of Pharmacal Research
    • /
    • v.15 no.1
    • /
    • pp.52-57
    • /
    • 1992
  • The molecular structure of a natural compound was determined by single crystal X-ray diffraction analysis. The compound was isolated by methanol extraction and repeated chromatography from the stem of Paulownia tomentosa. Yellow prismatic crystals of the compound, which were recrystallized from tetrahydrofuran, are triclinic, with a = 7.310 (6), b = 10.753(6), c = 11.586(5) ${\AA}.\;\alpha= 93.30(6),\;\beta=105.62(10),\;\gamma=109.49(7)^\circ,\;D_x=1.514,\;D_m=1.51 g/cm^3$, space group P1 and Z = 2. The structure was solved by direct method, and refined by least-squares procedure to the final R-value of 0.032 for 1271 independent reflections $(F\le3\sigma{(F))}$. The compound is one of new furanquinone analogue. The molecule has a nearly planar conformation with an intramolecular hydrogen bond. In the crystal, the planar molecules are arranged as a prallel sheet-like pattern, and these stackings are stabilized by the O-H...O type intermolecular hydrogen bonds. The other intermolecular contacts appear to be the normal van der Waals interactions.

  • PDF

Target segmentation in non-homogeneous infrared images using a PCA plane and an adaptive Gaussian kernel

  • Kim, Yong Min;Park, Ki Tae;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2302-2316
    • /
    • 2015
  • We propose an efficient method of extracting targets within a region of interest in non-homogeneous infrared images by using a principal component analysis (PCA) plane and adaptive Gaussian kernel. Existing approaches for extracting targets have been limited to using only the intensity values of the pixels in a target region. However, it is difficult to extract the target regions effectively because the intensity values of the target region are mixed with the background intensity values. To overcome this problem, we propose a novel PCA based approach consisting of three steps. In the first step, we apply a PCA technique minimizing the total least-square errors of an IR image. In the second step, we generate a binary image that consists of pixels with higher values than the plane, and then calculate the second derivative of the sum of the square errors (SDSSE). In the final step, an iteration is performed until the convergence criteria is met, including the SDSSE, angle and labeling value. Therefore, a Gaussian kernel is weighted in addition to the PCA plane with the non-removed data from the previous step. Experimental results show that the proposed method achieves better segmentation performance than the existing method.

Variable Parameter Sliding Controller Design for Vehicle Brake with Wheel Slip

  • Liang, Hong;Chong, Kil-To
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1801-1812
    • /
    • 2006
  • In this paper, a 4-wheel vehicle model including the effects of tire slip was considered, along with variable parameter sliding control, pushrod force as the end control parameter, and an antilock sliding control, in order to improve the performance of the vehicle longitudinal response. The variable sliding parameter is made to be proportional to the square root of the pressure derivative at the wheel, in order to compensate for large pressure changes in the brake cylinder. A typical tire force-relative slip curve for dry road conditions was used to generate an analytical tire force-relative slip function, and an antilock sliding control process based on the analytical tire force-relative slip function was used. A retrofitted brake system, with the pushrod force as the end control parameter, was employed, and an average decay function was used to suppress the simulation oscillations. Simulation results indicate that the velocity and spacing errors were slightly larger than the results that without considering wheel slip effect, the spacing errors of the lead and follower were insensitive to the adhesion coefficient up to the critical wheel slip value, and the limit for the antilock control on non-constant adhesion road condition was determined by the minimum of the equivalent adhesion coefficient.

Methods of Knock Signal Analysis in a S.I. Engine (4 기통 스파크 점화 기관의 노킹 신호 해석 방법)

  • Kim, K.W.;Chun, K.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.12-21
    • /
    • 1993
  • In recent years, high efficiency, high performance, and low pollutant emmision engines have been developed. Knock phenomenon has drawn interests because it became an hinderance to engine power and efficiency increase through higher compression ratio. Knock phenomenon is an abnormal combustion originated from autoignition of unburned gas in the end-gas region during the later stage of combustion process and accompanied a high pitched metallic noise. And this phenomenon is characterized by knock occurrence percentage, knock occurrence angle and knock intensity. A four cylinder spark ignition engine is used in our experiment, and its combustion chamber pressure is measured at various engine speeds, ignition timing. The data are analyzed by numerous methods in order to select the optimum methods and to achieve better understanding of knock characteristics. Methods using band-pass filter, third derivative and step method are shown to be the most suitable, while methods using frequency analysis are shown to be unsuitable. Because step method only uses signals above threshold value during knocking condition, pressure signal analyses with this method show good signal-to-noise ratio.

  • PDF

A Novel Bromoindole Alkaloid from a Korean Colonial Tunicate Didemnum sp.

  • Hahn, Dongyup;Kim, Geum Jin;Choi, Hyukjae;Kang, Heonjoong
    • Natural Product Sciences
    • /
    • v.21 no.4
    • /
    • pp.278-281
    • /
    • 2015
  • Chemical investigation on a colonial marine tunicate, Didemnum sp. led to the isolation of a series of indole alkaloids including a new (1) and two known metabolites (2-3). Based on the spectroscopic analysis including 1D and 2D NMR along with MS spectra, the structure of 1 (16-epi-18-acetyl herdmanine D) was elucidated as a new amino acid derivative. The absolute configuration of 1 was determined by comparison of specific rotation with the known compound. The structures of compounds 2 and 3 were also identified as bromoindole containing compounds N-(6-bromo-1H-indole-3-carbonyl)-L-arginine and (6-bromo-^1H-indol-3-yl) oxoacetamide, respectively, based on $^1H$ and $^{13}C$ NMR data, MS data and specific rotation value. Their pharmacological potentials as antibacterial agents and FXR antagonists were investigated, but no significant activity was found. However, the structural similarity of compound 1 to compound 4 suggested the anti-inflammatory potential of compound 1.

Analysis of Prospective Teachers' Mathematical Content Knowledge about Differential area (예비교사의 미분영역에 관한 내용지식의 분석)

  • Cho, Wan-Young
    • School Mathematics
    • /
    • v.14 no.2
    • /
    • pp.233-253
    • /
    • 2012
  • The purpose of the study investigate mathematics content knowledge(MCK) of prospective teachers in differential area. 70 prospective teachers were asked to perform six questions based on Cho's MCK (2010, 2011). The results show that depending on whether they experience any teacher education program, the level of prospective teachers' mathematics content knowledge may vary. In particular, prospective teachers struggled with an unfamiliar problem situations. We also found that prospective mathematics teachers have some difficulty in solving problem about the use of mean value theorem and derivative.

  • PDF