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Abstract

This paper presents a design technique based on the root
locus method for a class of #"” order plants using PID
(Proportional-Integral-Derivative) x (n-1) stage PD
controller. It is intended to satisfy both transient and steady
state response specifications. This controller can be used
instead of a conventional PID controller for the higher
order plants to obtain better performances. The controlled
system is approximated as a stable and robust second order
controlled system. Only adjusting the controller gain, the
desired performances of the controlled system are satisfied.
For the stable plant including the plant with small dead
time, the controlled system is made robustly stable. In case
of the unstable plant, when the controller gain is adjusted
higher than the critical value, the unstable plant can also be
made stable. Robustness properties given by this controller
proposed in this paper have also been demonstrated by
numerical examples.

1. Introduction

The PID (Proportional-Integral-Derivative) controller is
widely used by applying the well-known Ziegler-Nichols
tuning method [1]. It is clear that the PID controller is
properly applied in the typical second order plant. But it is
quite difficult to use only the PID controller for the third or
higher order plants because the order of the plant is greater
than the number of zeros provided by the PID controller
[2]. Moreover, the tuning methods sometimes require trial
and error procedures, and the Ziegler-Nichols settings do
not always produce the best results to meet the transient
response requirements because of ¥ decay ratio criterion.

This paper presents a design technique based on the root
locus method for a class of #” order plants G,(s) to satisfy
both transient and steady state response specifications. The
transfer function of a class of n” order plants should not
include zeros, the poles of the plant should have negative
real part (stable plant) or at most two poles with positive
real part (unstable plant) is allowed. The PID x (n-1) stage
PD controller [3] G(s) is again proposed. This controller is
more widely applied not only for the type 0 and type 1
plant, but it can be used for the type 2 plant, plant with a
pair of complex conjugate poles, plant with small dead
time and unstable plant with at most two unstable poles as
well. The two dominant open-loop poles of G(s)G,(s) may
be the simple poles, multiple poles or a pair of complex
conjugate poles. The remaining (»-1) poles are considered
as non-dominant open-loop poles. Due to the transfer
function of the plant G,(s) usually being determined
through testing and physical modeling, linearization of a
nonlinear plant, or the uncertain parameters concerned,
which cause the location of the poles may not be exact.
The (n-1) zeros of the controller are arbitrarily placed near
the left-hand side of all non-dominant open-loop poles of
G(s)Gy(s) in order to reduce the effect of these poles. The

desired locations of two dominant closed-loop poles s, are
determined from the transient response specifications. The
double zeros of (s+z.)? of the controller must contribute the
necessary angle to force the root locus to go through s,.
The location of the double zeros of (s +z)* and the gain K.
at s; can be determined by the root locus method, which is
more effective in design than the method provided by
pseudo quantitative feedback theory [4]. The other (n-1)
closed-loop poles are located near the (n-1) zeros. Hence,
the magnitudes of the transient responses of these (n-1)
closed-loop poles are very small and negligible though the
exact pole-zeros cancellations do not happen [5]. However,
the transient response does not completely satisfy the
specification because of the effect of the double zeros of
(s+z.)%. By this technique, the dominant root locus (which
originated from the two dominant open-loop poles) of the
stable plant is located on the left half of the s-plane, and its
shape takes a form of a circle or circle-like shape. Then the
controller gain can be increased to reduce maximum
overshoot to obtain the desired specification. Since the
roots of the characteristic equation located on the left half
of the s-plane, then the controlled system can be made
stable and robust. In case of the unstable plant, the shape of
the dominant root locus also takes a form of circle or
circle-like shape and encircles the origin in the s-plane.
When the controller gain is adjusted higher than the critical
value determined in the design processes, the roots of the
characteristic equation are forced to locate on the left half
of the s-plane. Therefore, the unstable plant can also be
made robustly stable (conditionally stable) when the
controller gain is adjusted higher than the critical value.
Faster responses with a little overshoot could also be
achieved by adjusting the controller gain higher than the
designed value if desired. Furthermore, the same controller
also rapidly eliminates the effect of the disturbances.
Consequently, it can be said that the proposed approach
gives an effective controller design method for a class of
n" order plants.

MATLAB's numerical results of various plants with
different controller parameters show the advantages of this
technique.

2. Controller Structure

Fig. 1. Structure of the control system.

The structure of the control system is shown in Fig. 1. R(s)
is the reference input, D\(s) and Dy(s) are defined as the
process step disturbance and output step disturbance. G(s)

E-298



and G(s) are defined as the transfer functions of the
controller and the plant, respectively. In general, when the
PID controller is applied to the higher order plants with
step input, the steady state error is zero, but the transient
response does not meet the specifications. The PID x (n-1)
stage PD controller is again proposed for a class of n"
order plants to meet the specifications and robustness. This
controller is more widely applied when compared to the
PID x (»-1) stage PD controller in the previous paper [3] in
that the controller proposed in this paper can cover the type
2 plant, plant having a pair of complex conjugate poles,
plant with small dead time and plant with at most two
unstable poles. The transfer function of the PID x (n-1)
stage PD controller is again specified as

G.(s)=X, (1 LI Tds]’i:[‘Kpj (1+7,s)
T;s j=1

8))

“Ea (a2 PTG+ 2,),
K} J=l

Where K,, T; and T, are respectively proportional gain,
integral time and derivative time of the PID controller.
When T;> 47, both zeros are negative real zeros and when
T; < 4T, the two zeros are a pair of complex conjugate
zeros. K;,; and T are proportional gain and derivative time
of the (n-1) stage PD controller. For the proposed
controller, K, is the gain of the controller, -z. is the
negative real double zeros, -z; (=1,2,....,n-1) is all negative
real zeros or consists of a pair of complex conjugate zeros
with negative real part.

3. Plant Structure

The n" order plants that are often found in practice are
classified into three types, type 0, type 1 and type 2. Each
type consists of a certain number of first order lags.
Moreover, the plant that consists of a pair of complex
conjugate poles with some first order lags and the plant
with dead time is also frequently found in industries. In
general, almost of the industrial plants are the stable plants
and include none zeros. Therefore, the transfer function of
a class of n” order plants is given as

G, (s)=—2—, @
'Hl (s + Pi)
j=
where -p; (i=1,2,.....,n) is the poles at the origin, simple or
multiple poles, or consists of a pair of complex conjugate
poles, and consists of at most two unstable poles.
For the plant with small dead time, e, the transfer
function of ¢™ can be approximated by the Maclaurin
series [5] in the following three terms

-Ls _ 1 - 1
= 22,4 ;
1+ Ls+ L5712 (s+1+j)(s+

1
- (S+p15(S+;1),

where L is the small dead time, —p; and —;1 are a pair of
complex conjugate poles on the left half of the s-plane.

In this paper, when the plant with small dead time is
analyzed, the transfer function of the dead time ™ is
considered as a part of the transfer function of the plant.
Then the transfer function of the plant with small dead
time can also be written in the form of (2).

4. Design Procedures

The design procedures to meet the transient response
specifications are as follows:
1) From (1) and (2), the open-loop transfer function is

KﬂK(s + zc)z'i:ll(s + zj)
G (5)Gp(s) = /1

sﬁ(s‘*l’i)
o )
K,:(s+zc)2 H(s+zj)
j=l

(Hm)(swz)'j}_:(ﬁpi)’

where K. = KK, -p, and -p, are the two dominant open-
loop poles of G.(s)G,(s) (poles with positive or negative
real part) which may be the pole at the origin, simple pole,
multiple poles (p) = p,) or complex poles (p; and p, are the
complex conjugate poles), -p; (=1,2,.....,n-1) is the real or
complex poles with negative real part.

2) The (n-1) zeros of the controller are placed near the
left-hand side of the (»-1) non-dominant open-loop
poles in order to reduce the effect of these poles. The
negative real double zero of (s+z.)° of the controller is
used to force the root locus to go through s, Hence,

K.(s+2. T+ p, +5)
i=1

G.(5)G)(s) = &)

n-1 ?
(S+P1)(s+ Pz)q(“'Pr)

where -z; = -(p; + &) (=1,2,..,n-1; i=12,...,n-1), g is a

small real number.

3) The damping ratio ¢, undamped natural frequency a,
and sy are determined from the transient response
specifications in (6).

P.0.= 10071, t, = 4/¢w, (£2%),

sa.=~Cw, £ jw,1-¢2,

where P.O. is the percent overshoot, ¢ is the settling time

and s, are the dominant closed-loop poles.

4) Find the sum of the angles at s, with all of the open-
loop poles and (n-1) zeros of GJ(s)G,(s), then
determine the necessary angle of 2x £(s, +z,) to be

added so that the total sum of the angles satisfies (7).

®

[2 x L(sg +z. )+ nilé(sd +pi+&; )]
i=1

n-1
'l:é(sd +p)+ Lsy+pa)+ ;14(311 +p; )} @)
=+(2k + )z, k=012,..

5) Determine the location of the double zeros of (s+z.)*
using the angle of Z(s, +z,) found in (7).
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6) Determine the gain K. at s, from

n—~1
I(Sd + P X|(Sd + Pz]gl(sd + Pix

Kc - 5 n=1 . (8)
](sd + ZcX ’__H]|(sd +p; +511
7) The closed-loop transfer function is
n-1
Y(s),_ Kc(s+zc)2il;ll(s+pi +£) o)

R(S) (52 +24w,s + a),? T]:[l(s +p; + 5,») ’
i=1

n-1
where ]'[(s+ Di +5,-) are real or complex closed-loop
i=1

-1
poles located near the open-loop zeros 'h(s +p, + g,-) , O
i=1

is a small real or complex number.

Since all of the (n-1) closed-loop poles located near the
open—loop zeros, it can be shown that the coefficients of
these closed-loop poles are proportional to (& -3;), which is
a very small number. This implies that though the poles at
-p; can not be cancelled, the resulting transient responses
due to these closed-loop poles have insignificant
magnitudes, and their effect can be neglected [5].

Since (& -&,) = 0, then (9) can be written as

Y(s) _ Kc(s+zc)2

= . 10
R(s) (s2+24’w,,s+a)3) (10

It is evident that the transient response does not completely
satisfy the desired specifications because greater overshoot
occurs due to the effect from the double zeros. Since the
dominant root locus is a circle shape located on the left
half of the s-plane, then the controller gain can be adjusted
to reduce overshoot to obtain the desired specification.
Moreover, faster responses with a little overshoot are
achieved by further increase the controller gains while the
controlled system still stable.

5. Effect of the Disturbances

If the process step disturbance is applied, the transfer
function from the process step disturbance to the output is

Y(S) _ Gp(s)

Dy(s)  1+Ge(s)G, ()

The effect of the process step disturbance on the step
response depends on the characteristics of the process,
process gain K, controller gain K, From (11), increasing
of the controller gain, the effect of the process step
disturbance is decreased.

If the output step disturbance is applied, the transfer
function from the output step disturbance to the output is

Y (s) _ 1
DZ(S) 1+Gc(sx;p(s)
The output step disturbance has an important effect on the

step response at the initial state. However, the controller
rapidly eliminates the effect of the output step disturbance.

an

(12)

6. Special Case

For the type 0-second order plant that the two poles are a
pair of complex conjugate poles locate on the left half of
the s-plane. The PID controller with T;<4T; is used instead
of the proposed controller. The complex conjugate zeros of
the PID controller are placed near the open-loop complex
conjugate poles. Hence, the open-loop transfer function is

K s+ +z
G ()G ,(s) = o chxs _“"‘), (13)
S(S+P1)(S+P1)
The closed-loop transfer function can be approximated as
r(s), K.
el 14
R(s) s+K, (4

7. Numerical Examples

Example of the type 0 and type 1, fourth order plant
The example of the type 0 and type 1, fourth order plants
with the proposed controller had been presented [3].

Example of type 2-fourth order plant, 2 unstable poles

1

The desired specifications for step input are
PO .s5%, t(+2%)<1sec, e(f)=0.
From the desired specifications,
¢ =0.690, w, =5.796 rad/sec, sq = -4 +j4.195.

With the design procedures, the transfer function of the
proposed controller is

G.(s)= L%éi(s +7.566) (s +0.1) .

Therefore, the open-loop transfer function is

1.764(s +7.566)* (s +0.1)°

53(s—1Xs—2)

Ge(8)G,(s) =

05

0 " " "
[ 05 1 15

25 35 4 45 5
Time (second)

Fig. 2. Step responses of the controlled system (type 2).

When the gain K. > 0.212 (critical value), the type 2
unstable plant can be made stable. Fig. 2 shows that the
step response (with the effect of 50% output step
disturbance at ¢ = 3 sec.) of the controlled system does not
satisfy all the specifications for the designed K, = 1.764
(P.O. = 125 %, t,= 1.5 sec, ex(H) = 0). When K, is
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increased to 4.65, the step response then satisfy all the
specifications (P.O. = 5 %, t,= 0.425 sec, e() = 0).

Example of the plant with complex conjugate poles

The proposed controller is designed for the simplified
position control of an AC induction motor model that has
been implemented [6]. The step responses are also
compared to the step responses designed by the PIDA
controller in [2]. From (16) in [2],

168.0436

sls? +25.9215 +168.0436)

- 168.0436
s(s +12.96+ j0.263)(s +12.96— /0.263)

Gp(s)=

Again, when the same specifications are desired,

0.863(s +8.208)* (s +13.5+ j0.35)s +13.5 - j0.35)

Gc (S)Gp (S) = )
s (s+12.96+ j0.263)s +12.96 - ;0.263)

Kc=0863 (Proposed controller}
Kc=2336 (Proposed controfler)
K'=21.279 (PIDA contrailer)
K'=40 (PIDA controller)

[¢] 0;5 ; 1.‘5 é 25 3 35 4 45 5
Time {second)

Fig. 3. Step responses of an AC induction motor model.

Figure 3 shows the step response of an AC induction motor
model for the designed K. = 0.863 (P.O. = 11.5 %, t,= 0.8
sec, e,(H) = 0). When K, = 2.336, the step response that
satisfy all specifications (P.O. = 5 %, t,= 0.6 sec, e, () = 0)
is also shown. These step responses are compared to the
step responses using the PIDA controller in [2]. From [2],
when gain XK'= 21.279, P.O. = 8.95 %, and when K' = 40,
P.O. =49 % and ¢,= 1.18 sec. It can be concluded that
these two design technigues give almost the same results
but this proposed design technique give fast settling time
and low controller gain compared to the PIDA controller.

Example of the plant with small dead time

Consider the following plant with (2) and (3),

Ke™ K

s+2  (s+2)(s+02+,02)(s+02-,02)

G,(s)=

With the same specifications desired, then

0.51(s +10.0)* (s + 0.25+ j0.25)s + 0.25— j0.25)

GG, ()= —— 35 + 02+ 025 + 02— j03)

It is shown in Fig. 4 that the step response of the above
example almost satisfies the desired specifications for the
designed K. = 0.51 (P.O. = 9.1 %, £,= 0.8 sec, e.(f) = 0).
When K, is adjusted to 1.3, the step response then satisfies
all the desired specifications (P.O. = 5 %, t,= 0.6 sec, e(f)
= 0). However, this pair of complex conjugate closed-loop
poles and zeros located near the imaginary axis produces a
long tail of small amplitude [7].

Ke=051
- Ke=13

o 05 1 15 2 25 3 35 4 a5 s
Time {second)

Fig. 4. Step responses of the controlled system (type 0)
with small dead time.

Example of the plant with uncertain parameters

The type O-fourth order plant with uncertain parameters
while the parameters of the proposed controller remain
unchanged is also discussed in the foregoing paper [3].

8. Conclusions

The PID x (n-1) stage PD controller designed by the root
locus method has been again proposed in this paper. This
controller can be applied to the higher order plants instead
of the PID controller to obtain better performances.
Moreover, this controller can also be applied to the plant
with small dead time, plant with a pair of complex
conjugate poles and unstable plant with at most two
unstable poles. When this controller is applied to the stable
plant, only adjusting the controller gain, the desired
performances of the controlled system are satisfied and the
system can be made robustly stable. The unstable plant
could also be made stable when the controller gain is
adjusted higher than the critical value. Faster responses
with a little overshoot can also be obtained. Moreover, the
controller rapidly eliminates the effect of the disturbances.
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