• Title/Summary/Keyword: depth of indentation

Search Result 127, Processing Time 0.023 seconds

Deformation prediction by a feed forward artificial neural network during mouse embryo micromanipulation

  • Abbasi, Ali A.;Vossoughi, G.R.;Ahmadian, M.T.
    • Animal cells and systems
    • /
    • v.16 no.2
    • /
    • pp.121-126
    • /
    • 2012
  • In this study, a neural network (NN) modeling approach has been used to predict the mechanical and geometrical behaviors of mouse embryo cells. Two NN models have been implemented. In the first NN model dimple depth (w), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were used as inputs of the model while indentation force (f) was considered as output. In the second NN model, indentation force (f), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were considered as inputs of the model and dimple depth was predicted as the output of the model. In addition, sensitivity analysis has been carried out to investigate the influence of the significance of input parameters on the mechanical behavior of mouse embryos. Experimental data deduced by Fl$\ddot{u}$ckiger (2004) were collected to obtain training and test data for the NN. The results of these investigations show that the correlation values of the test and training data sets are between 0.9988 and 1.0000, and are in good agreement with the experimental observations.

Analysis of Size Effect of Nano Scale Machining Based on Normal Stress and Indentation Theories (수직응력과 압입이론에 기반한 나노스케일 기계가공에서의 크기효과 분석)

  • Jeon, Eun-chae;Lee, Yun-Hee;Je, Tae-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.1-6
    • /
    • 2018
  • Recently nano meter size pattern (sub-micro scale) can be machined mechanically using a diamond tool. Many studies have found a 'size effect' which referred to a specific cutting energy increase with the decrease in the uncut chip thickness at micro scale machining. A new analysis method was suggested in order to observe 'size effect' in nano scale machining and to verify the cause of the 'size effect' in this study. The diamond tool was indented to a vertical depth of 1,000nm depth in order to simplify the stress state and the normal force was measured continuously. The tip rounding was measured quantitatively by AFM. Based on the measurements and theoretical analysis, it was verified that the main cause of the 'size effect' in nano scale machining is geometrically necessary dislocations, one of the intrinsic material characteristics. st before tool failure.

Prism Compressive Strength of Non-structural Concrete Brick Masonry Walls According to Workmanship (시공정밀도에 따른 비구조용 콘크리트벽돌 조적벽체의 프리즘 압축강도)

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.2
    • /
    • pp.127-136
    • /
    • 2020
  • Prism compressive strength is the most influential parameter to evaluate the seismic performance of non-structural concrete brick masonry walls, and is affected by the practice and workmanship of masonry workers. This study experimentally investigates the influence of workmanship on prism compressive strength throughout the compressive test with prism specimens constructed according to masonry workmanship. To do this, the workmanship is categorized into good, fair, and poor conditions which are statistically evaluated with thickness and indentation depth of bed-joints. Then, the effect of workmanship on the structural properties of masonry prisms is evaluated by investigating relations between properties such as their compressive strength, elastic modulus and numerical parameters such as thickness, filling of bed-joints. This study demonstrates that the indentation depth is more important parameter for structural properties of masonry prisms and masonry prisms with loss in bed-joint area less than of 7% can be in fair condition.

Evaluation of Welding Characteristics on 3-lap Spot Joint of Zinc Coned Seel Sheet md High Seength Steel Sheet (아연도금 강판과 고장력 강판 3겹 점용접물의 용접특성 평가)

  • Kwon Il-Hyun;Kim Hoi-Hyun;Baek Seung-Se;Yang Seong-Mo;Yu Hyo-Sun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.42-49
    • /
    • 2005
  • In general, multi-lap spot weld joints are frequently present in automobile. Most research, however, has been focused on the single-lap spot weld joints until now. In this paper, tensile-shear strength tests are performed to examine the weldability of 3-lap spot joint welded by using the high strength steel sheet and the zinc coated steel sheet. The indentation depth and nugget diameter are used to propose the optimum welding conditions. The weldability is affected by the welding current and welding time for 3-lap spot joint. Meanwhile the expulsions is round to decrease with the increase of electrode force. The optimum welding conditions are presented for 3-lap spot joints of high strength steel sheet and zinc coated steel sheet.

Bonded-cluster simulation of tool-rock interaction using advanced discrete element method

  • Liu, Weiji;Zhu, Xiaohua;Zhou, Yunlai;Li, Tao;Zhang, Xiangning
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.469-477
    • /
    • 2019
  • The understanding of tool-rock interaction mechanism is of high essence for improving the rock breaking efficiency and optimizing the drilling parameters in mechanical rock breaking. In this study, the tool-rock interaction models of indentation and cutting are carried out by employing the discrete element method (DEM) to examine the rock failure modes of various brittleness rocks and critical indentation and cutting depths of the ductile to brittle failure mode transition. The results show that the cluster size and inter-cluster to intra-cluster bond strength ratio are the key factors which influence the UCS magnitude and the UCS to BTS ratio. The UCS to BTS strength ratio can be increased to a more realistic value using clustered rock model so that the characteristics of real rocks can be better represented. The critical indentation and cutting depth decrease with the brittleness of rock increases and the decreasing rate reduces dramatically against the brittleness value. This effort may lead to a better understanding of rock breaking mechanisms in mechanical excavation, and may contribute to the improvement in the design of rock excavation machines and the related parameters determination.

Weldability and Optimum Welding Conditions on the 4 Lap Spot Welded Joint of High Strength Steel Sheets in Automobile (고장력 강판 적용에 따른 자동차용 4겹 다층 점용접물의 용접성 및 적정 용접조건)

  • Kwon Il-Hyun;Kim Hoi-Hyun;Baek Seung-Se;Yang Seong-Mo;Yu Hyo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.481-487
    • /
    • 2006
  • Spot-welding is a widely used manufacturing method for thin-sheet components, especially in mass-production industries such as the car industry. Automobiles are often constructed by multi-lap spot welding to secure the passenger from the accident, where optimisation of the welding conditions is a major economic consideration. This research is conducted to investigate weldability characteristics with various welding conditions on the 4-lap spot welded joint of structural steel sheets in automobile. The relationship between the tensile-shear strength and the indentation depth has been investigated to propose the optimum welding conditions. The welding current and the welding time have a greater effect on the welding characteristics than the electrode force. It was found that the electrode force has a relatively close relationship with the expulsion occurrence. The design curves for optimum welding are proposed for the 4-lap spot welded joint.

A Study on Determination of the Area Function of Nano Indenter Tip with AFM (AFM을 이용한 나노 인덴터 팁의 면적함수 결정에 관한 연구)

  • 박성조;이현우;한승우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.145-152
    • /
    • 2004
  • Depth-sensing indentation is wifely used for evaluation of mechanical properties of thin films. It is generally accepted that the most significant source of uncertainty in nanoindentation measurement is the geometry of the indenter tip. Therefore the successful application of the technique requires accurate calibration of the indenter tip geometry. The direct measurement of geometry of a Berkovich indenter was determined using a atomic force microscope. The indentation geometrical calibration of contact area was performed by analyzing the indenter tip profile. The equations of area functions were proposed for nanoscale thin films..

Development of a New Probe to Realize Nano/Micro Mechanical Machining and In-Process Profile Measurement (나노인프로세스 형상계측 및 미세가공용 프로브의 개발)

  • Kweon, Hyun-Kyu;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.75-84
    • /
    • 2003
  • In this paper, a new nano/micro-mechanical processing test machine was developed. This new test machine, which is based on the principle of the scanning force controlled probe microscope, can realize nano/micro-mechanical machining and in-process profile measurement. Experimental results of nano/micro indentation and scratching show that the controllable cutting depth of the test machine can be controlled by PZT actuator. Profile measurement of the machined surface has also been performed by using the test machine and a conventional AFM(Atomic Force Microscopy). A good agreement of the two measurement results have been achieved.

  • PDF

Atomistic simulation and investigation of nanoindentation, contact pressure and nanohardness

  • Chen, Chuin-Shan;Wang, Chien-Kai;Chang, Shu-Wei
    • Interaction and multiscale mechanics
    • /
    • v.1 no.4
    • /
    • pp.411-422
    • /
    • 2008
  • Atomistic simulation of nanoindentation with spherical indenters was carried out to study dislocation structures, mean contact pressure, and nanohardness of Au and Al thin films. Slip vectors and atomic stresses were used to characterize the dislocation processes. Two different characteristics were found in the induced dislocation structures: wide-spread slip activities in Al, and confined and intact structures in Au. For both samples, the mean contact pressure varied significantly during the early stages of indentation but reached a steady value soon after the first apparent load drop. This indicates that the nanohardness of Al and Au is not affected by the indentation depth for spherical indenters, even at the atomistic scale.

Development of Force/Displacement Sensing System for Nanomachining (나노 가공을 위한 힘.변위 검출시스템 개발)

  • Bang, Jin-Hyeok;Kwon, Ki-Hwan;Park, Jae-Jun;Cho, Nahm-Gyoo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.777-781
    • /
    • 2004
  • This paper presents a force/displacement sensing system to measure penetration depths and machining forces during pattering operation. This sensing system consists of a leaf spring mechanism and a capacitive sensor, which is mounted on a PZT driven in-feed motion stage with 1nm resolution. The sample is moved by a xy scanning motion stage with 5nm resolution. The constructed system was applied to nano indentation experiments, and the load-displacement curves of silicon(111) and aluminum were obtained. Then, the indentation samples were measured by AFM. Experimental results demonstrated that the developed system has the ability of preforming force/depth sensing indentations

  • PDF