• Title/Summary/Keyword: depth determination

Search Result 448, Processing Time 0.039 seconds

Determination of the Depth of Sewers in Residental Complexes (주택단지내 하수관거의 매설심도 결정에 관한 연구)

  • Lim, Bong Su;Choi, Eui So;Yi, Yun Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.3
    • /
    • pp.41-50
    • /
    • 1994
  • The depth of sewers in residential complexes was determined to prevent the separated sewers from misconnection between storm sewer and sanitary sewer, and from the submersion of the basement by minimizing the phenomenon of backwater when it rains. In residential complexes, main causes of the submersion were the misconnection of sewers, rising of the backwater level at outfall in sewer system, poor maintenance of sewers, and lacking in their cross section. Minimum depth of sewers should be over 1.2~1.5m. According to the economic analysis, the depth of 1.5m~3.0m was appropriate for minimizing the submersion of basements and for making the disposal of domestic wastewater more easily.

  • PDF

SPECTRAL LINE-DEPTH RATIO AS A PRECISE EFFECTIVE TEMPERATURE AND SURFACE GRAVITY INDICATOR FOR WARM STARS

  • Kim, Chul-Hee
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.4
    • /
    • pp.125-128
    • /
    • 2006
  • In order to determine the precise effective temperature and surface gravity of warm stars, all synthetic spectral lines in the wavelength range of $4000-5700{\AA}$ with T=6000-7750 K, and log g=3.5, 4.0, and 4.5 for [M/H]=0.0, $V_{rot}$=10 km $s^{-1}$, and $V_{tubl}$=2 km $s^{-1}$ were calculated using the SYNSPEC package(Hubeny, et al., 1995) and the Kurucz(1995) model. Then, the depth-ratios for all line pairs were investigated and we selected two and six depth-ratios appropriate for the surface gravity and temperature indicators, respectively. We plotted six grids with X- and Y-axes for the depth-ratios of surface gravity and temperature, respectively, for the simultaneous estimation of these two atmospheric parameters. This method was applied to the spectum of $\delta$ Scu for the determination of its temperature and surface gravity simultaneously.

A Study on Estimation of Water Depth Using Hyperspectral Satellite Imagery (초분광 위성영상을 이용한 수심산정에 관한 연구)

  • Yu, Yeong-Hwa;Kim, Youn-Soo;Lee, Sun-Gu
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.216-222
    • /
    • 2008
  • Purpose of this research is estimation of water depth by hyperspectral remote sensing in area that access of ship is difficult. This research used EO-l Hyperion satellite imagery. Atmospheric and geometric correction is executed. Compress of band used MNF transforms. Diffuse Attenuation Coefficient of target area is decided in imagery for water depth estimation. Determination of Emdmember in pixel is using Linear Spectral Unmixing techniques. Water depth estimated using this result.

  • PDF

The Parameter Determination of a Scribing Machine for Semiconductor Wafer (반도체 웨이퍼용 스크라이빙 머신의 파라메터 결정)

  • 차영엽;최범식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.218-225
    • /
    • 2003
  • The general dicing process cuts a semiconductor wafer to lengthwise and crosswise direction by using a rotating circular diamond blade. However, inferior goods may be made under the influence of several parameters in dicing process such as blade, wafer, cutting water and cutting conditions. Moreover we can not apply this dicing method to a GaN wafer, because the GaN wafer is harder than other wafers such as SiO$_2$, GaAs, GaAsP, and AlGaAs. In order to overcome this problem, development of a new dicing process and determination of dicing parameters are necessary. This paper describes determination of several parameters - scribing depth, scribing force, scriber inclined angle, scribing speed, and factor for scriber replacement - for a new dicing machine using a scriber.

The Parameter Determination of Scribing Machine for Semiconductor Wafer (반도체 웨이퍼용 스크라이빙 머신의 파라메터 결정)

  • 차영엽;최범식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.164-167
    • /
    • 2002
  • The general dicing process cuts a semiconductor wafer to lengthwise and crosswise direction by using a rotating circular diamond blade. But inferior goods are made under the influence of several parameters in dicing process such as blade, wafer, cutting water and cutting conditions. Moreover we can not applicable this dicing method to GaN wafer, because the GaN wafer is harder than the other wafer such as SiO$_2$, GaAs, CaAsP, and AlCaAs. In order to overcome this problem, development of a new dicing process and determination of dicing parameters are necessary. This paper describes determination of several parameters - scribing depth, scribing force, scriber inclined angle, scribing speed, and factor for scriber replacement - for a new dicing machine using scriber.

  • PDF

AN APPLICATION OF THE DETERMINATION METHOD FOR SOIL PARAMETERS WITH THE DESIGN CODE FOR PORT AND HARBOUR FACILITIES IN JAPAN

  • Watabe, Yoichi;Nozaki, Ikuro;Tanaka, Masanori;Kwon, Oh-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.31-36
    • /
    • 2010
  • This paper introduces a practical determination method for soil parameters adopted in the new performance based design code for port and harbour facilities in Japan. In the new port-design code, the depth profile of the derived values is modeled as the profile of the estimated values so as to be either the mean value or the regression line, then the correction factors are multiplied to the estimated value according to the coefficient of variation (if COV > 0.1) and the number of the data entries (if n < 10). The new port-design code is applied to the unconfined compression test results for the Hiroshima Port clay in order to evaluate the undrained shear strengths. From the discussion, it is emphasized that not only the statistic treatment but also the engineering judgment are required in the procedure of the soil parameter determination for the reliability design.

  • PDF

Effects of Span-to-depth Ratio and Poisson's Ratio on Elastic Constants from Bending and Plate Tests

  • Jeong, Gi Young;Kong, Jin Hyuk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • The goal of this study is to evaluate the limitation of ASTM D 198 bending and ASTM D 3044 in determination of elastic modulus and shear modulus. Different material properties and span to depth ratios were used to analyze the effects of material property and testing conditions. The ratio of true elastic modulus to apparent elastic modulus evaluated from ASTM D 198 bending sharply decreased with increment of span to depth ratio. Shear modulus evaluated from ASTM D 198 bending decreased with increment of depth, whereas shear modulus evaluated from ASTM D 3044 was hardly influenced by increment of depth. Poisson's ratio influenced shear modulus from ASTM D 198 bending but did not influence shear modulus from ASTM D 3044. Different shearing factor was obtained for different depths of beams to correct shear modulus obtained from ASTM D 198 bending equivalent to shear modulus from theory of elasticity. Equivalent shear modulus of materials could be obtained by applying different shearing factors associated with beam depth for ASTM D 198 bending and correction factor for ASTM D 3044.

Normal Depth of Best Section (최량수리단면의 등류수심)

  • Yoo, Dong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.729-736
    • /
    • 2002
  • The computation of normal depth is one of the most important parts in the design of open channel flow, and the best section is in general the most economic section in the case of constructing artificial open channels. Thus the determination of the normal depth of the best section is the essential item in the design of most open channel flows. To estimate the frictional forces a power law is introduced, which is applicable to most situations in open channel flows. Explicit and consistent forms of equations are deduced for the calculation of normal depth of triangular, rectangular and trapezoidal best sections. Furthermore the equations of normal depth are found to have the same form as those of pipe diameter for the design of pipe flow.

A Derivation of Aerosol Optical Depth Estimates from Direct Normal Irradiance Measurements

  • Yun Gon Lee;Chang Ki Kim
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.79-87
    • /
    • 2024
  • This study introduces a method for estimating Aerosol Optical Depth (AOD) using Broadband Aerosol Optical Depth (BAOD) derived from direct normal irradiance and meteorological factors observed between 2016 and 2017. Through correlation analyses between BAOD and atmospheric components such as Rayleigh scattering, water vapor, and tropospheric nitrogen dioxide, significant relationships were identified, enabling accurate AOD estimation. The methodology demonstrated high correlation coefficients and low Root Mean Square Errors (RMSE) compared to actual AOD500 measurements, indicating that the attenuation effects of water vapor and the direct impact of tropospheric nitrogen dioxide concentration are crucial for precise aerosol optical depth estimation. The application of BAOD for estimating AOD500 across various time scales-hourly, daily, and monthly-showed the approach's robustness in understanding aerosol distributions and their optical properties, with a high coefficient of determination (0.96) for monthly average AOD500 estimates. This study simplifies the aerosol monitoring process and enhances the accuracy and reliability of AOD estimations, offering valuable insights into aerosol research and its implications for climate modeling and air quality assessment. The findings underscore the viability of using BAOD as a surrogate for direct AOD500 measurements, presenting a promising avenue for more accessible and accurate aerosol monitoring practices, crucial for improving our understanding of aerosol dynamics and their environmental impacts.