• Title/Summary/Keyword: depth buffer

Search Result 117, Processing Time 0.027 seconds

THE EFFECT OF ACID CONCENTRATION AND pH OF LACTATE BUFFER SOLUTION ON THE PROGRESS OF ARTIFICIAL CARIES LESION IN HUMAN TOOTH ENAMEL (유산완충액을 이용한 인공치아우식의 형성에 미치는 산의 농도와 pH에 관한 연구)

  • Park, Seong-Ho;Lee, Chan-Young;Lee, Chung-Suck
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.277-290
    • /
    • 1993
  • Dental caries is considered to be caused by demineralization by organic acid produced by microorganism. But the formation of subsurface lesion in initial caries make it diffcult to explain by simple demineralization. This study is carried out on the basis of thermodynamic concept proposed by Margolis and Moreno. The purpose of this study is to evaluate the effects of acid concentration and pH of lactate buffer system on the artificial caries lesion progress. 160 teeth without any crack, defect or opaque enamel were used and coated with nail varnish except the window ($2{\times}3$ mm). Under the constant degree of saturation(D.S.). The teeth were divided into 8 groups according to acid concentration(10mM, 25mM, 50mM, 100mM) and pH(4.3, 5.0, 6.0). Each group was immersed in buffer solution for 3, 6, 9, 18 days under controlled temperature($25^{\circ}C$). After cutting through the window and grinding, the specimens, 100-150 um in thickness, were imbibed in water or air and examined using polarilizing microscope. The depth of the surface and subsurface surface lesion were measured. 1. In the constant pH and D. S. value, the subsurface lesion progresses more rapidly as the concentration of lactic acid increases. (0.01, 0.025, 0.05, 0.1) 2. In the constant acid concentration and DS value, the subsurface lesion progresses more slowly as the pH increases. (4.3, 5.0, 5.5, 6.0) 3. The width of surface lesion seems to be constant independant of pH and acid concentration.

  • PDF

An Evaluation of Soil-Water Characteristic Curve Model for Compacted Bentonite Considering Temperature Variation (온도 변화를 고려한 압축 벤토나이트 완충재의 함수특성곡선 모델 평가)

  • Yoon, Seok;Jeon, Jun-Seo;Go, Gyu-Hyun;Kim, Geon-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.10
    • /
    • pp.33-39
    • /
    • 2020
  • A geological repository has been considered as an option for the disposal of high-level radioactive waste (HLW). The HLW is disposed in a host rock at a depth of 500~1,000 meters below the ground surface based on the concept of engineered barrier system (EBS). The EBS is composed of a disposal canister, buffer material, backfill material, and gap-filling material. The compacted bentonite buffer is very important since it can restrain the release of radionuclide and protect the canister from the inflow of ground water. The saturation of the buffer decreases because high temperature in a disposal canister is released into the surrounding buffer material, but saturation of the buffer increases because of the inflow of ground water. The unsaturated properties of the buffer are critical input parameters for the entire safety assessment of the engineered barrier system. In Korea, Gyeongju bentonite can be considered as a candidate buffer material, but there are few test results of the unsaturated properties considering temperature variation. Therefore, this paper conducted experiment of soil-water characteristic curve for the Gyeongju compacted bentonite considering temperature variation under a constant water content condition. The relative error showed approximately 2% between test results and modified van-Genuchten model values.

A Prediction of Thermal Conductivity for Compacted Bentonite Buffer in the High-level Radioactive Waste Repository (고준위폐기물 처분시설의 압축 벤토나이트 완충재의 열전도도 추정)

  • Yoon, Seok;Lee, Min-Soo;Kim, Geon-Young;Lee, Seung-Rae;Kim, Min-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.55-64
    • /
    • 2017
  • A geological repository has been considered one of the most adequate options for the disposal of high-level radioactive waste. A geological repository will be constructed in a host rock at a depth of 500~1,000 meters below the ground surface. The geological repository system consists of a disposal canister with packed spent fuel, buffer material, backfill material, and intact rock. The buffer is very important to assure the disposal safety of high-level radioactive waste. It can restrain the release of radionuclide and protect the canister from the inflow of groundwater. High temperature in a disposal canister is released into the surrounding buffer material, and thus the thermal transfer behavior of the buffer material is very important to analyze the entire disposal safety. Therefore, this paper presents a thermal conductivity prediction model for the Kyungju compacted bentonite buffer material which is the only bentonite produced in Korea. Thermal conductivity of Kyungju bentonite was measured using a hot wire method according to various water contents and dry densities. With 39 data obtained by the hot wire method, a regression model to predict the thermal conductivity of Kyungju bentonite was suggested.

Evaluation of Soil-Water Characteristic Curve for Domestic Bentonite Buffer (국내 벤토나이트 완충재의 함수특성곡선 평가)

  • Yoon, Seok;Jeon, Jun-Seo;Lee, Changsoo;Cho, Won-Jin;Lee, Seung-Rae;Kim, Geon-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • High-level radioactive waste (HLW) such as spent fuel is inevitably produced when nuclear power plants are operated. A geological repository has been considered as one of the most adequate options for the disposal of HLW, and it will be constructed in host rock at a depth of 500~1,000 meters below ground level with the concept of an engineered barrier system (EBS) and a natural barrier system. The compacted bentonite buffer is one of the most important components of the EBS. As the compacted bentonite buffer is located between disposal canisters with spent fuel and the host rock, it can restrain the release of radionuclides and protect canisters from the inflow of groundwater. Because of inflow of groundwater into the compacted bentonite buffer, it is essential to investigate soil-water characteristic curves (SWCC) of the compacted bentonite buffer in order to evaluate the entire safety performance of the EBS. Therefore, this paper conducted laboratory experiments to analyze the SWCC for a Korean Ca-type compacted bentonite buffer considering dry density, confined or unconfined condition, and drying or wetting path. There was no significant difference of SWCC considering dry density under unconfined condition. Furthermore, it was found that there was higher water suction in unconfined condition that in confined condition, and higher water suction during drying path than during wetting path.

Acceleration Method for Ray Casting using Depth Buffer (깊이 버퍼를 이용한 레이캐스팅의 고속화)

  • 김승완;송주환;권오봉
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.211-213
    • /
    • 2003
  • 이 논문에서는 레이캐스팅을 고속화하는 단순하고 효율적인 알고리즘을 제안한다. 범용 PC에서 볼륨데이터를 이용하여 애니메이션을 하기 위해서는 초당 30 프레임의 영상을 생성하여야하나 아직 이에 도달하지 못하여 고속화가 필요하다. 지금까지의 바운딩서피스 기반의 레이캐스팅의 고속화에서는 임의의 시점에서 객체(object)의 깊이(depth)값을 그 객체의 바운딩서피스를 깊이 버퍼에 투영하여 구하였다. 이와는 다르게 이 논문에서 제안하는 방법은 시점과 무관하게 x, y, z 세 방향의 깊이 버퍼를 설치하고 이 것을 이용하여 임의의 방향에서 시정에 대한 물체의 깊이 값을 구한다. 이렇게 함으로서 임의의 시점에서 객체의 깊이 값을 구하는 시간을 N$^3$에서 8$N_2$으로 줄일 수 있다. 여기서 N은 차원당 복셀의 개수이다.

  • PDF

Fabrication and Bi-Sr-Ca-Cu-O Superconducting Thin Films by RF Magnetron Sputtering (RF-Magnetron Sputtering에 의한 Bi-Sr-Ca-Cu-O 초전도 박막의 제조)

  • 홍철민;박현수
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.227-233
    • /
    • 1994
  • The Bi-Sr-Ca-Cu-O thin films were deposited by RF-magnetron sputtering method on Si(P-111) wafer without a buffer layer and annealed at various temperatures in oxygen atmosphere. The temperature dependence of electrical resistance, the microstructure of intermediate phase, and the surface morphology of films were examined by four probe method, XRD, and SEM, respectively. The chemical composition and the depth profile of the films were determined by ESCA spectra. Thin films annealed at $600^{\circ}C$ and $700^{\circ}C$ in oxygen atmosphere showed onset temperatures of 90 K and 85K, and Tc(zero) of 22K and 31K, respectively. The sample annealed at $700^{\circ}C$ had the highest volume fraction of superconducting phase and showed smooth microsturcture. In ESCA spectra, the thin films were homogeneous with depth.

  • PDF

A Pixel Cache Architecture with Selective Loading Scheme based on Z-test (깊이 검사 결과에 의한 선택적 적재 방법을 가지는 픽셀 캐쉬 구조)

  • 이길환;박우찬;김일산;한탁돈
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.10
    • /
    • pp.579-585
    • /
    • 2003
  • Recently most of 3D graphics rendering Processors have the pixel cache storing depth data and color data to reduce the memory latency and the bandwidth requirement. In this paper, we propose the effective pixel cache for improving the performance of a rendering processor. The proposed cache system stores the depth data selectively based on the result of Z-test and the color data are stored into the auxiliary buffer. Simulation results show that the 16Kbyte proposed cache system provides better performance than the 32Kbyte conventional cache.

Boundary Surface Volume Rendering Based on Depth Buffer (깊이버퍼 기반의 경계면 볼륨렌더링)

  • 권오봉;송주환;최성희
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.2
    • /
    • pp.23-31
    • /
    • 2004
  • This paper focuses on a boundary surface based ray casting. In general the boundary surface based ray casting is processed in two stages. The first stage finds boundary surfaces and stores them into buffers. The second stage calculates a distance from a viewpoint to the voxels of the interested area by projecting boundary surfaces on the view plane, and then starts to traverse a volume data space with the distance. Our approach differs from the general boundary surface based ray casting in processing the first stage of it. Contrast to the typical boundary surface based ray casting where all boundary surfaces of volume data are stored into buffers, they are projected on the planes aligned to the axis of volume data coordinates and these projected data are stored into 6 buffers. Such maneuver shortens time for ray casting, and reduces memory usage because it can be carried out independently from the amount of the volume data.

  • PDF

A Study on 3D Object Retrieval using Reflective Symmetry (반사 대칭을 이용한 3차원 오브젝트 검색에 관한 연구)

  • Song, Ju-Whan;Choi, Seong-Hee;Gwun, Ou-Bong
    • 전자공학회논문지 IE
    • /
    • v.44 no.4
    • /
    • pp.48-54
    • /
    • 2007
  • Due to the diverse utilization of multimedia, interests are increasing towards processing (saving, editing, searching, etc) three dimensional object data. This paper proposes and realizes a retrieval system for three dimensional objects using reflective symmetry. For the retrieval method, a reflective symmetric axis with a projector is used. The symmetric plane is calculated by the reflection symmetry, and the depth buffer is calculated for the symmetric plane. Then, by applying the Fourier Transform to the depth buffer, the feature vector for the object is generated and retrieved. For the sample of inquiry, the model of similar symmetry was extracted using the benchmark data from Konstantz University. Considering that most of the objects have symmetrical characteristics, the proposed method of retrieving three dimensional objects using a reflective symmetric surface is an outstanding retrieval system.

Analysis of Submicron Gate GaAs MESFET's Characteristics Using Particle Model (입자모델을 이용한 서브마이크론 게이트 GaAs MESFET 특성의 해석)

  • 문승환;정학기;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.534-540
    • /
    • 1990
  • In this paper the characteristics of submicron gate GaAs MESFET's have been studied using a particle model which takes into account the hot-electron transport phenomena, i.e., the velocity overshoot. \ulcornervalley(<000> direction), L valley (<111>direction), X valley (<100>direction) as the GaAs conduction energy band and optical phonon, acoustic phonon, equivalent intervalley, nonequivalent intervalley scattering as the scattering models, have been considered in this simulation. And the GaAs material and the device simulation have been done by determination of the free flight time, scattering mechanism and scattering angle according to Monte-Carlo algorithm which makes use of a particle model. As a result of the particle simulation, firstly the electron distribution, the potential energy distribution and the situation of electron displacement in 0.6 \ulcorner gate length device have been obtained. Secondly, the cutoff frequency, obtained by this method, is k47GHz which is in good agreement with the calculated result of theory. And the current-voltage characteristics curve which takes account of the buffer layer effect has been obtained. Lastly it has been verified that parasitic current at the buffer layer can be analyzed using channel depth modulation.

  • PDF