• Title/Summary/Keyword: deposition rate

Search Result 1,889, Processing Time 0.03 seconds

The Variation of Hydro-Geomorphological Environment in Baekgok Wetland due to Water-Level Fluctuation of Reservoir (댐 수위 변동에 따른 백곡습지의 수문지형 환경 변화)

  • Kim, Dong Hyun;Park, Jongkwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.1
    • /
    • pp.39-50
    • /
    • 2017
  • This study was conducted to analyze the variation of hydro-geomorphological environment along Baekgok wetland, which experiencing periodical inundation, in that water-level fluctuation of reservoir caused by irrigation. Since the field data is unavailable, modeling techniques, involving models such as HSPF and TELEMAC-2D, have been applied to simulate hydrological cycle in watershed and hydrodynamics in channel scale. The result of simulation indicates that the water-level of reservoir determines both the water surface extension and water depth in the wetland. Furthermore, it also shows that water-level functions as a spatial limit factor for a fluvial environment and woody vegetation such as willow. The fact of which the scale of water-level fluctuation being larger than an average topographical relief along the wetland can explain the result. While the water-level kept high, the wetland is submerged and waterbody becomes lentic. In contrast, while the water-level is lowered, fluvial phenomena of which being dependent on flow rate and channel shape become active. Hence, the valid fluvial process is likely to take place only for 4 months annually just near the channel, and it advances to a conclusion expecting a deposition to be dominant among the wetland except for such area. It is anticipated that such understanding can contribute to establishing plans to preserve the geomorphological and ecological value of the Baekgok wetland.

Characterization of Electric Double-Layer Capacitors with Carbon Nanotubes Directly Synthesized on a Copper Plate as a Current Collector (구리 집전판에 직접 합성한 탄소나노튜브의 전기이중층 커패시터 특성)

  • Jung, Dong-Won;Lee, Chang-Soo;Park, Soon;Oh, Eun-Souk
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.419-424
    • /
    • 2011
  • Carbon nanotubes (CNTs) were directly synthesized on a copper (Cu) plate as a current collector by the catalytic thermal vapor deposition method for an electric double-layer capacitor (EDLC) electrode. The diameters of vertically aligned CNTs grown on the Cu plate were 20~30 nm. From cyclic voltammetry (CV) results, the CNTs/Cu electrode showed high specific capacitance with typical profiles of EDLCs. Rectangularshaped CV curves suggested that the CNTs/Cu electrode could be an excellent candidate for an EDLC electrode. The specific capacitances were in a range of 25~75 F/g with a scan rate of 10~100 mV/s and KOH electrolyte concentration 1~6 M, and were maintained up to 1000 charge/discharge cycles due to strong adhesion between the Cu substrate and the CNTs.

Enhancement of the Corrosion Resistance of CrN Film Deposited by Inductively Coupled Plasma Magnetron Sputtering

  • Chun, Sung-Yong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.112-117
    • /
    • 2021
  • Inductively coupled plasma magnetron sputtering (ICPMS) has the advantage of being able to dramatically improve coating properties by increasing the plasma ionization rate and the ion bombardment effect during deposition. Thus, this paper presents the comparative results of CrN films deposited by direct current magnetron sputtering (dcMS) and ICPMS systems. The structure, microstructure, and mechanical and corrosive properties of the CrN coatings were investigated by X-ray diffractometry, scanning electron microscopy, nanoindentation, and corrosion-resistance measurements. The as-deposited CrN films by ICPMS grew preferentially on a 200 plane compared to dcMS on a 111 plane. As a result, the films deposited by ICPMS had a very compact microstructure with high hardness. The nanoindentation hardness reached 19.8 GPa, and 13.5 GPa by dcMS. The corrosion current density of CrN film prepared by ICPMS was about 9.8 × 10-6 mA/cm2, which was 1/470 of 4.6 × 10-3 mA/cm2, the corrosion current density of CrN film prepared by dcMS.

Enhancing the Effect of Aronia Extract on Hyaluronic Acid Synthesis through Liposome Formation

  • Youn, Young Han
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.4
    • /
    • pp.465-473
    • /
    • 2020
  • Background and objective: Aronia melanocarpa, called black chokeberry, is a natural product belonging to the family rosaceae, and is known to contain polyphenolic antioxidants including cyanidin-3-galactoside, cyanidin-3-arabinoside, cyanidin-3-xyloside, and cyanidin-3-glucoside Because of the abundance of anthocyanins, Aronia has been studied to be used in various industries. Methods: Aronia melanocarpa extract was treated 24 hours a day to RAW 264.7 cells with inflammations induced by LPS. After extracting total RNA, the amount of inflammatory cytokine expression was measured using RT-PCR. After processing the Aronia liposome using Aronia extract and the layer-by-layer electrostatic deposition method in keratinocyte cells at the same time, we checked the synthesis of Hyaluronic acid enhanced through the formation of Aronia liposome using ELISA. Results: The treatment of Aronia extract in inflammation-induced RAW 264.7 cells conducted to check the anti-inflammatory efficacy of Aronia extract inhibited inflammatory cytokines including TLR4, TNF-α, IL-1β, COX-2, and iNOS and increased the mRNA expression of HAS2 genes related to moisturizing. Based on the anti-inflammatory and moisturizing effect of Aronia extract, the Aronia liposome technology was introduced to Aronia extract to produce Aronia liposome. Conclusion: The liposome formation of Aronia extract is expected to be used as a functional material in treating various inflammatory skin diseases by controlling the moisture content of the corneocytes by increasing the expression rate of genes associated with the synthesis of hyaluronic acid, while retaining the efficacy of its components.

Synthesis and Characterization of the Ag-doped TiO2

  • Lee, Eun Kyoung;Han, Sun Young
    • Elastomers and Composites
    • /
    • v.57 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, the photo-deposition method was used to introduce Ag onto the surface of TiO2 to synthesize an Ag-TiO2 composite. The effects of the varying amounts of AgNO3 precursor and annealing time periods on the Ag content in the composites, as well as their antibacterial characteristics under visible light conditions were studied. SEM analysis revealed the spherical morphology of the Ag-TiO2 composite. Compared with TiO2, the Ag particles were too small to be observed. An XPS analysis of the Ag-TiO2 surface confirmed the Ag content and showed the peak intensities for elements such as Ag, Ti, O, C, and Si. The highest Ag content was observed when 33.3 wt.% of AgNO3 and an annealing time of 6 h were employed; this was the optimum annealing time for Ti-Ag-O bonding, in that the lowest number of O bonds and the highest number of Ag bonds were confirmed by XPS analysis. Superior antibacterial properties against Bacillus and Escherichia coli, in addition to the widest inhibition zones were exhibited by the Ag-TiO2 composite with an increased Ag content in a disk diffusion test, the bacterial reduction rate against Staphylococcus aureus and Escherichia coli being 99.9%.

Analysis of Correlation Between Silicon Solar Cell Fabrication Steps and Possible Degradation (실리콘 태양전지 제조공정과 열화의 상관관계 분석)

  • Yewon Cha;Suresh Kumar Dhungel;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.16-22
    • /
    • 2023
  • In a solar cell, degradation refers to the decrease in performance parameters caused by defects originated due to various causes. During the fabrication process of solar cells, degradation is generally related to the processes such as passivation or firing. There exist sources of many types of degradation; however, the exact cause of Light and elevated Temperature Induced Degradation (LeTID) is yet to be determined. It is reported that the degradation and the regeneration occur due to the recombination of hydrogen and an arbitrary substance. In this paper, we report the deposition of Al2O3 and SiNX on silicon wafers used in the Passivated Emitter and Rear Contact (PERC) solar structure and its degradation pattern. A higher degradation rate was observed in the sample with single layer of Al2O3 only, which indicates that the degradation is affected by the presence or the absence of a passivation thin film. In order to alleviate the degradation, optimization of different steps should be carried out in consideration of degradation in the solar cell fabrication process.

Wood and Leaf Litter Decomposition and Nutrient Release from Tectona grandis Linn. f. in a Tropical Dry Deciduous Forest of Rajasthan, Western India

  • Kumar, J.I. Nirmal;Sajish, P.R.;Kumar, Rita.N.;Bhoi, Rohit Kumar
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.1
    • /
    • pp.17-23
    • /
    • 2010
  • The present study was conducted to quantify wood and leaf litter decomposition and nutrient release of a dominant tree species, Tectona grandis Linn. F. in a tropical dry deciduous forest of Rajasthan, Western India. The mean relative decomposition rate was maximum in the wet summer and minimum during dry summer. Rainfall and its associated variables exhibited greater control over litter decomposition than temperature. The concentrations of N and P increased in decomposing litter with increasing retrieval days. Mass loss was negatively correlated with N and P concentrations. The monthly weight loss was significantly correlated (P < 0.05) with soil moisture and rainfall in both wood and leaf litter. Tectona grandis was found to be most suitable tree species for plantation programmes in dry tropical regions as it has high litter deposition and decomposition rates and thus it has advantages in degraded soil restoration and sustainable land management.

Combined Treatment of Stromal Vascular Fraction and Ablative Fractional CO2 Laser for Hypertrophic Foot Scar

  • Kim, Dong Gyu;Park, Eun Soo;Kim, Seok Hwan
    • Medical Lasers
    • /
    • v.8 no.2
    • /
    • pp.90-93
    • /
    • 2019
  • The treatment of keloid and hypertrophic scars (HTSs) remains one of the most difficult challenges, with a high recurrence rate regardless of the method of treatment. The latest trend in scar management is a combined approach using multiple modalities that are individualized to the patient and that would provide successful results for keloid and HTSs. There are previous reports that stromal vascular fraction (SVF) is effective for scar remodeling. Based on these reports, we introduced the concept of a combination treatment using SVF injection and fractional ablative CO2 laser. In this report, we present a 21-year-old woman who was involved in a car accident. A defect on her foot was covered with a skin graft, but the scars became elevated, which turned out to be HTSs. She was treated with a fractional ablative CO2 laser for five sessions. A month later, SVF injection and fractional ablative CO2 laser were conducted simultaneously. The result of a year's follow-up showed a flattened scar with resolution of pigment deposition. In conclusion, the combination treatment for HTSs with SVF injection and ablative fractional CO2 laser is one of the modalities to achieve an excellent outcome for treating HTS.

Research Progress on NF3 Substitute Gas of PECVD Chamber Cleaning Process for Carbon Neutrality (반도체·디스플레이 탄소중립을 위한 PECVD 챔버세정용 NF3대체가스 개발연구)

  • Seyun Jo;Sang Jeen Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.72-75
    • /
    • 2023
  • Carbon neutrality has been emerged as important mission for all the manufacturing industry to reduce energy usage and carbon emission equivalent. Korean semiconductor and display manufacturing industries are also in huge interest by minimize the energy usage as well as to find a less global warming product gases in both etch and cleaning. In addition, Korean government is also investing long term research and development plan for the safe environment in various ways. In this paper, we revisit previous research activities on carbon emission equivalent and current research activities performed in semiconductor process diagnosis research center at Myongji University with respect to the reduction of NF3 usage for the PECVD chamber cleaning, and we present the analytical result of the exhaust gas with residual gas analysis in both 6 inches and 12 inches PECVD equipment. The presented result can be a reference study of the development of new substitution gas in near future to compare the cleaning rate of the silicon oxide deposition chamber.

  • PDF

Enhancing the Two Way Shape Memory Functionality of Ni-Ti Sheet through the Deposition of Ti Layer (Ti 적층을 이용한 Ni-Ti 계 판재의 양방향 형상기억 기능성 개선 연구)

  • H. N. Kwon;Y. H. Park;D. Abolhasani;Y. H. Moon
    • Transactions of Materials Processing
    • /
    • v.33 no.5
    • /
    • pp.330-340
    • /
    • 2024
  • The martensitic Ni-Ti shape memory alloys(SMA) can achieve a two-way shape memory effect (TWSME) through thermomechanical training/cycling. In this study, the surface of Ni-Ti SMA sheets was treated by depositing a certain number of titanium (Ti) powder layers using a selective laser meling (SLM) process to enhance TWSME. The results showed that a unique TWSME of approximately 12% with good stability was achieved after 100 training cycles when the optimum number of five Ti layers was deposited. A larger HAZ and lower cooling rate pushed more Ti particles into the grains rather than the grain boundaries, providing more time for Ti to react with NiTi to form Ti-rich intergranular Ti2Ni(Ox) precipitates. This resulted in further hindering of dislocation movement within the grains and the generation of internal stress fields required for attaining a larger TWSME. With an increase in the number of Ti-deposited layers, there was no noticeable reduction in the one-way shape memory effect (OWSME) through the initial cycling. This was due to the high residual tensile stress caused by the lower thermal expansion of the Ti layer compared to the Ni-Ti sheet.