• Title/Summary/Keyword: deposition rate

Search Result 1,889, Processing Time 0.037 seconds

A study on the nonvolatile memory characteristics of MNOS structures with double nitride layer (2층 질하막 MNOS구조의 비휘발성 기억특성에 관한 연구)

  • 이형욱
    • Electrical & Electronic Materials
    • /
    • v.9 no.8
    • /
    • pp.789-798
    • /
    • 1996
  • The double nitride layer Metal Nitride Oxide Semiconductor(MNOS) structures were fabricated by variating both gas ratio and nitride thickness, and by duplicating nitride deposited and one nitride layer MNOS structure to improve nonvolatile memory characteristics of MNOS structures by Low Pressure Chemical Vapor Deposition(LPCVD) method. The nonvolatile memory characteristics of write-in, erase, memory retention and degradation of Bias Temperature Stress(BTS) were investigated by the homemade automatic .DELTA. $V_{FB}$ measuring system. In the trap density double nitride layer structures were higher by 0.85*10$^{16}$ $m^{-2}$ than one nitride layer structure, and the AVFB with oxide field was linearly increased. However, one nitride layer structure was linearly increased and saturated above 9.07*10$^{8}$ V/m in oxide field. In the erase behavior, the hole injection from silicon instead of the trapped electron emission was observed, and also it was highly dependent upon the pulse amplitude and the pulse width. In the memory retentivity, double nitrite layer structures were superior to one nitride layer structure, and the decay rate of the trapped electron with increasing temperature was low. At increasing the number on BTS, the variance of AVFB of the double nitride layer structures was smaller than that of one nitride layer structure, and the trapped electron retention rate was high. In this paper, the double nitride layer structures were turned out to be useful in improving the nonvolatile memory characteristics.

  • PDF

A Numerical Study on the Growth and Composition of InGaAs, InGaP and InGaAsP Films Grown by MOCVD (MOCVD에 의한 InGaAs, InGaP 및 InGaAsP필름의 성장 및 조성변화에 대한 수치해석 연구)

  • Im, Ik-Tae;Kim, Dong-Suk;Kim, Woo-Seung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.1 s.10
    • /
    • pp.43-48
    • /
    • 2005
  • Metaloganic chemical vapor deposition, also known as metalorganic vapor phase epitaxy has become one of the main techniques for growing thin, high purity films for compound semiconductors such as GaAs, InP, and InGaAsP. In this study, the distribution of growth rate and composition of InGaAsP, InGaP, and InGaAs films are studied using computational method. The influences of process parameters such as pressure, temperature and precursors' partial pressure on the growth rate and composition distributions are analyzed. The film growth rate is increased in the upstream part according to the increase of temperature but not in the downstream part. The Ga composition in InGaAsP film shows an asymptotic behavior for temperature variation but As composition varies significantly within the temperature range considered in the present study. The overall film growth rates of InGaP, InGaAs and InGaAsP are decreased with increasing the Ga/In ratios of the source gases. Pressure variation does not seem to be a significant parameter to the film growth. Film growth characteristics of tertiary films such as InGaP and InGaAs show similar trends to the quaternary film, InGaAsP.

  • PDF

Simulation of Various Baffle to Improve Settling Efficiency in Constructed Wetland using CFD (인공습지의 비용 효율적 초기 침강지 설계를 위한 최적 도류벽 구조 모의)

  • Noh, Tae gyun;Jeon, Jechan;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.451-458
    • /
    • 2017
  • In this study, the removal efficiency of the wetland in terms of particulate matter and dead water zone through the application of baffles in the sedimentation were simulated with the use of Computational Fluid Dynamics (CFD) to determine the design of a cost-effective constructed wetland. As a result, it was analyzed that the application of the baffle in the sedimentation tank affect the flow and sedimentation rate. Fine particles such as $2{\mu}m$ and $5{\mu}m$ showed high sedimentation rate when the baffles are installed horizontally. large particles such as $10{\mu}m$ and $20{\mu}m$ showed also high deposition rate when the baffles are installed vertically. In addition, the vertical baffles is considered to be more efficient than other baffle types in terms of maintenance since the particulate matter are concentrated in narrow areas. Therefore, it is considered that the selection of the most applicable type of baffle depends on the design purpose of the wetland to be constructed.

Assessment of Design Method about Sanitary Sewer Network according to RDII and Established Scenario (RDII발생 및 기존 시나리오에 따른 오수간선 네트워크 설계방법 검토)

  • Kim, Jungryul;Oh, Jeill
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.4
    • /
    • pp.367-374
    • /
    • 2016
  • In this study, the RDII impact on sewer designing in the upstream monitoring area (A site) was considered. Based on the long-term (1/1/2011~12/31/2011) rainfall and flow data consisting of 10-min interval sampling in the nearby design area (B site), the maximum RDII/DWF ratio was selected. The sewer network system at B site was evaluated by the Manning equation. Scenario 1 considering the hourly maximum flow with respect to the flow velocity showed that none of the sewer pipes satisfied the minimum flow velocity condition (0.6 m/s), and 40 pipes did not achieve half of the velocity condition. In scenario 2 considering I/I, 1 the pipes satisfied 0.6 m/s, and 35 pipes showed 0.3 m/s. Scenario 3 reflected the effect of RDII. Velocities in 26 pipes were less than 0.3 m/s, and 4 pipes satisfied the velocity condition. With respect to the allowance rate, 17 pipes were shown to have more than 99%, and none of the pipes satisfied less than 95% of the allowance rate in scenario 1. In scenario 2, 17 Ed: Per the Table pipes showed more than 99% and one pipe showed less than 95%. In scenario 3, 16 pipes showed more than 99% of the allowance rate, and 19 pipes showed less than 95%. Based on these results, it is predicted that deposition would occur due to the slow flow velocity; however, capacity would not be a problem.

Interfacial Reactions of Sn-Ag-Cu solder on Ni-xCu alloy UBMs (Ni-xCu 합금 UBM과 Sn-Ag계 솔더 간의 계면 반응 연구)

  • Han Hun;Yu Jin;Lee Taek Yeong
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.84-87
    • /
    • 2003
  • Since Pb-free solder alloys have been used extensively in microelectronic packaging industry, the interaction between UBM (Under Bump Metallurgy) and solder is a critical issue because IMC (Intermetallic Compound) at the interface is critical for the adhesion of mechanical and the electrical contact for flip chip bonding. IMC growth must be fast during the reflow process to form stable IMC. Too fast IMC growth, however, is undesirable because it causes the dewetting of UBM and the unstable mechanical stability of thick IMC. UP to now. Ni and Cu are the most popular UBMs because electroplating is lower cost process than thin film deposition in vacuum for Al/Ni(V)/Cu or phased Cr-Cu. The consumption rate and the growth rate of IMC on Ni are lower than those of Cu. In contrast, the wetting of solder bumps on Cu is better than Ni. In addition, the residual stress of Cu is lower than that of Ni. Therefore, the alloy of Cu and Ni could be used as optimum UBM with both advantages of Ni and Cu. In this paper, the interfacial reactions of Sn-3.5Ag-0.7Cu solder on Ni-xCu alloy UBMs were investigated. The UBMs of Ni-Cu alloy were made on Si wafer. Thin Cr film and Cu film were used as adhesion layer and electroplating seed layer, respectively. And then, the solderable layer, Ni-Cu alloy, was deposited on the seed layer by electroplating. The UBM consumption rate and intermetallic growth on Ni-Cu alloy were studied as a function of time and Cu contents. And the IMCs between solder and UBM were analyzed with SEM, EDS, and TEM.

  • PDF

Physical properties and electrical characteristic analysis of silicon nitride deposited by PECVD using $N_2$ and $SiH_4$ gases ($N_2$$SiH_4$ 가스를 사용하여 PECVD로 증착된 Silicon Nitride의 물성적 특성과 전기적 특성에 관한 연구)

  • Ko, Jae-Kyung;Kim, Do-Young;Park, Joong-Hyun;Park, Sung-Hyun;Kim, Kyung-Hae;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.83-87
    • /
    • 2002
  • Plasma enhanced chemical vapor deposited (PECVD) silicon nitride ($SiN_X$) is widely used as a gate dielectric material for the hydrogenated amorphous silicon(a-Si:H) thin film transistors (TFT's). We investigated $SiN_X$ films were deposited PECVD at low temperature ($300^{\circ}C$). The reaction gases were used pure nitrogen and a helium diluted of silane gas(20% $SiH_4$, 80% He). Experimental investigations were carried out with the variation of $N_2/SiH_4$ flow ratios from 3 to 50 and the rf power of 200 W. This article presents the $SiN_X$ gate dielectric studies in terms of deposition rate, hydrogen content, etch rate and C-V, leakage current density characteristics for the gate dielectric layer of thin film transistor applications. Electrical properties were analyzed through high frequency (1MHz) C-V and current-voltage (I-V) measurements. The thickness and the refractive index on the films were measured by ellipsometry and chemical bonds were determined by using an FT-IR equipment.

  • PDF

A Study on Reusing of Electroless Co-Cu-P Waste Solution (무전해 Co-Cu-P 폐 도금액의 재사용에 관한 연구)

  • Bai Young-Han;Oh Lee-Sik
    • Resources Recycling
    • /
    • v.14 no.4 s.66
    • /
    • pp.34-40
    • /
    • 2005
  • Reusing of electroless Co-Cu-P waste solution was investigated in the respect of plating time, plating rate, solution composition and deposit. Plating time of cobalt-catalytic surface took longer than that of zincated-catalytic surface. It was possible to reuse the waste solution by mixing $50\%$ fresh solution at batch type. Plating time of initial solution at continuous type took longer 7.5 times over than that of batch type. Plating time of $50\%$ waste solution additive at continuous type took longer 2.5 times over than that of batch type. Component change of cobalt-topper for electroless deposition was greatly affected by deposit inferiority and rapid decrease in plating rate.

A Study on the Growth of CdTe Films by Close-Spaced Sublimation (근접승화법을 이용한 CdTe박막의 성장에 관한 연구)

  • Lee, Min-Suk;Huh, Joo-Youl;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.8 no.5
    • /
    • pp.383-393
    • /
    • 1998
  • Cadmium telluride films were grown by close-spaced sublimation(CSS) technique. The effects of various deposition parameters such as ambient pressure, source- to-substrate spacings and temperatures on the growth rate and the microstructure were investigated. The growth mode of CdTe films showed a transition as the ambient pressure changed. This transition was interpreted in terms of the diffusion limited transport and the sublimation limited transport of Cd and $Te_2$ vapors. Experimental results indicated that the transition of growth mode was related with the mean free path of gas molecules. The growth rate and the microstructure of CdTe films were affected by the source type- bulk or powder. This change was due to the temperature difference at the source surface. XRD and SEM analysis showed that the growth rate was one of the main factors to determine CdTe microstructures.

  • PDF

A Practical Methodology for Determination of Derived Intervention Levels on Relocation Following a Nuclear Accident (원자력 사고후 주민의 이주를 위한 유도개입준위 산정의 실용적 방법론)

  • Hwang, Won-Tae;Kim, Eun-Han;Suh, Kyung-Suk;Jeong, Hyo-Joon;Han, Moon-Hee;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.2
    • /
    • pp.91-96
    • /
    • 2004
  • A practical methodology for the determination of derived intervention levels (DILs) on relocation following an accidental release of radionuclides was designed based on dose rate on the ground. The influence of DILs was investigated with respect to the change of parameter values, which are dependent on socio-environmental characteristics in distinction from temporary and permanent relocations. The DILs on relocation showed a distinct difference depending on effective removal half-life of radionuclides following a deposition, delay time in measurement and residential characteristics. In particular, the delay time. In measurement was an important factor in determination of DILs in the case of an assumption that dose rate on the ground declines in a power function, not in an exponential function. The DILs showed lower numerical values as longer effective half-life, longer delay time In measurement and longer exposure time.

The use of HRSEM to characterize new and aged membranes in drinking water production

  • Wyart, Y.;Nitsche, S.;Chaudanson, D.;Glucina, K.;Moulin, P.
    • Membrane and Water Treatment
    • /
    • v.2 no.4
    • /
    • pp.251-266
    • /
    • 2011
  • This work deals with the use of High Resolution Scanning Electron Microscopy (HRSEM) to verify ultrafiltration membrane selectivity at the end of the production line as well as membrane ageing. The first part of this work is focused on new membranes. It is shown that it is better to use sputtering metallization than vacuum deposition, as this latter technique entails thermal damage to the skin layer. Moreover, the impact of the metallization layer on the determination of the membrane pore size is studied and it is observed that no impact of the metallization step can be clearly defined for a metallization layer ranging from 3 to 12 nm. For example, an average pore size of 16.9 nm and a recovery rate of 6.5 % are observed for a 150 kDa cellulose acetate membrane. These results are in agreement with those given by the manufacturer: pore size ranging from 10 to 15 nm and recovery rate ranging from 5 to 10 %. The second part of this work focuses on the study of membrane ageing. A PVDF hollow fibre membrane is studied. It is shown that a 65 % decrease in the permeate flux can be linked to a decrease in the number of pores at the surface of the membrane and a decrease in the recovery rate. In conclusion, a mapping of the pores is performed for several new hollow fibre membranes used to produce drinking water, made of different materials, with different geometries and molecular weight cut-off. These results provide reference data that will help better understand the phenomena of membrane fouling and membrane ageing.