• Title/Summary/Keyword: deposition model

Search Result 768, Processing Time 0.037 seconds

Sensitivity Analysis of Input Parameters for a Dynamic Food-Chain Model DYNACON (동적섭식경로모델 DYNACON에 대한 입력변수의 민감도분석)

  • Hwang, Won-Tae;Lee, Geun-Chang;Han, Moon-Hee;Cho, Gyu-Seong
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.1
    • /
    • pp.11-19
    • /
    • 2000
  • The sensitivity analysis of input parameters for a dynamic food chain model DYNACON was conducted as a function of deposition date for the long-lived radionuclides $(^{137}Cs,\;^{90}Sr)$. Also, the influence of input parameters for the short and long-terms contamination of selected foodstuffs (cereals, leafy vegetables, milk) was investigated. The input parameters were sampled using the LHS technique, and their sensitivity indices represented as PRCC. The sensitivity index was strongly dependent on contamination period as well as deposition date. In case of deposition during the growing stages of plants, the input parameters associated with contamination by foliar absorption were relatively important in long-term contamination as well as short-term contamination. They were also important in short-term contamination in case of deposition during the non-growing stages. In long-term contamination, the influence of input parameters associated with foliar absorption decreased, while the influence of input parameters associated with root uptake increased. These phenomena were more remarkable in case of the deposition of non-growing stages than growing stages, and in case of $^{90}Sr$ deposition than $^{137}Cs$ deposition. In case of deposition during growing stages of pasture, the input parameters associated with the characteristics of cattle such as feed-milk transfer factor and daily intake rate of cattle were relatively important in contamination of milk.

  • PDF

Optical Constants and Dispersion Parameters of CdS Thin Film Prepared by Chemical Bath Deposition

  • Park, Wug-Dong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.196-199
    • /
    • 2012
  • CdS thin film was prepared on glass substrate by chemical bath deposition in an alkaline solution. The optical properties of CdS thin film were investigated using spectroscopic ellipsometry. The real (${\varepsilon}_1$) and imaginary (${\varepsilon}_2$) parts of the complex dielectric function ${\varepsilon}(E)={\varepsilon}_1(E)+i{\varepsilon}_2(E)$, the refractive index n(E), and the extinction coefficient k(E) of CdS thin film were obtained from spectroscopic ellipsometry. The normal-incidence reflectivity R(E) and absorption coefficient ${\alpha}(E)$ of CdS thin film were obtained using the refractive index and extinction coefficient. The critical points $E_0$ and $E_1$ of CdS thin film were shown in spectra of the dielectric function and optical constants of refractive index, extinction coefficient, normal-incidence reflectivity, and absorption coefficient. The dispersion of refractive index was analyzed by the Wemple-DiDomenico single-oscillator model.

Modelling of Carbon Plume by Laser-ablation Method (레이저 용삭법에 의한 플라즈마의 진전 모델링)

  • So Soon-Youl;Lee Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.492-497
    • /
    • 2006
  • The study on laser-ablation plasmas has been strongly interested in fundamental aspects of laser-solid interaction and consequent plasma generation. In particular, this plasma has been widely used for the deposition of thin solid films and applied to the semiconductors and insulators. In this paper, we developed and discussed the generation of carbon ablation plasmas emitted by laser radiation on a solid target, graphite. The progress of carbon plasmas by laser-ablation was simulated using Monte-Carlo particle model under the pressures of vacuum, 1 Pa, 10 Pa and 66 Pa. At the results, carbon particles with low energy were deposited on the substrate as the pressure becomes higher However, there was no difference of deposition distributions of carbon particles on the substrate regardless of the pressure.

Charged Cluster Model as a New Paradigm of Crystal Growth

  • Nong-M. Hwang;In-D. Jeon;Kim, Doh-Y.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.87-125
    • /
    • 2000
  • A new paradigm of crystal growth was suggested in a charged cluster model, where charged clusters of nanometer size are suspended in the gas phase in most thin film processes and are a major flux for thin film growth. The existence of these hypothetical clusters was experimentally confirmed in the diamond and silicon CVD processes as well as in gold and tungsten evaporation. These results imply new insights as to the low pressure diamond synthesis without hydrogen, epitaxial growth, selective deposition and fabrication of quantum dots, nanometer-sized powders and nanowires or nanotubes. Based on this concept, we produced such quantum dot structures of carbon, silicon, gold and tungsten. Charged clusters land preferably on conducting substrates over on insulating substrates, resulting in selective deposition. if the behavior of selective deposition is properly controlled, charged clusters can make highly anisotropic growth, leading to nanowires or nanotubes.

  • PDF

Parameter Estimation in Debris Flow Deposition Model Using Pseudo Sample Neural Network (의사 샘플 신경망을 이용한 토석류 퇴적 모델의 파라미터 추정)

  • Heo, Gyeongyong;Lee, Chang-Woo;Park, Choong-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.11
    • /
    • pp.11-18
    • /
    • 2012
  • Debris flow deposition model is a model to predict affected areas by debris flow and random walk model (RWM) was used to build the model. Although the model was proved to be effective in the prediction of affected areas, the model has several free parameters decided experimentally. There are several well-known methods to estimate parameters, however, they cannot be applied directly to the debris flow problem due to the small size of training data. In this paper, a modified neural network, called pseudo sample neural network (PSNN), was proposed to overcome the sample size problem. In the training phase, PSNN uses pseudo samples, which are generated using the existing samples. The pseudo samples smooth the solution space and reduce the probability of falling into a local optimum. As a result, PSNN can estimate parameter more robustly than traditional neural networks do. All of these can be proved through the experiments using artificial and real data sets.

Determining Optimal Build Orientation in Fused Deposition Modeling for Minimizing Post Machining by Using Genetic Algorithm. (FDM(Fused Deposition Modeling) part의 후가공 최소화를 위한 최적성형방향 결정)

  • 안대건;김호찬;양화준;이일엽;장태식;정해도;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.18-21
    • /
    • 2003
  • Fused Deposition Modeling (FDM) parts are made by piling up thin layers that cause the stair stepping effect at the surface of FDM parts. This effect brings about poor surface roughness of the part and requires additional post machining such as manual finishing that is detrimental to the part geometry and time consuming. Determining optimal build orientation for FDM parts can be one solution to minimize the post machining. However, by using the CAD model, calculating the optimal build orientation is impractical due to heavy computing process. In order to calculate the optimal build orientation with high speed. the surface roughness model based on measured data and interpolation is newly developed in this research. Also. the genetic algorithm (GA) is applied for acquiring reliable solution. Finally, It is verified from the test that the presented approach is very efficient for reducing the additional post machining process fer FDM parts.

  • PDF

Effect of oxygen distribution for hot spot and carbon deposition minimization in a methane autothermal reforming reactor

  • Lee, Shin-Ku;Bae, Joong-Myeon;Kim, Yong-Min;Park, Joong-Uen;Lim, Sung-Kwang
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.1996-2000
    • /
    • 2008
  • In autothermal reforming reaction, oxygen to carbon ratio (OCR) and steam to carbon ratio (SCR) are significant factors, which control temperature and carbon deposition into the reactor. The OCR is more sensitive than the SCR to affect the temperature distribution and reforming efficiency. In conventional operation, hydrocarbon fuel, steam, and oxygen was homogeneously mixed and injected into the reactor in order to get hydrogen-rich gas. The temperature was abruptly raised due to fast oxidation reaction in the former part of the reactor. Deactivation of packed catalysts can be accelerated there. In the present study, therefore, the effect of the oxygen distribution is introduced and investigated to suppress the carbon deposition and to maintain the reactor in the mild operating temperature (e.g., $700{\sim}800^{\circ}C$). In order to investigate the effect numerically, the following models are adopted; heterogeneous reaction model and two-medium model for heat balance.

  • PDF

A Study on the A.I Detection Model of Marine Deposition Waste Using YOLOv5 (YOLOv5를 이용한 해양 침적쓰레기 검출 A.I 모델에 대한 연구)

  • Wang, Tae-su;Oh, Seyeong;Lee, Hyeon-seo;Jang, Jongwook;Kim, Minyoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.385-387
    • /
    • 2021
  • Marine deposition waste threatens the book ecosystem and causes a decrease in catch due to ghost fishing, causing damage of about 370 billion won per year. In order to collect this, a current status survey is conducted using two-way ultrasonic detectors, diving, and lifting frames. However, the scope of the investigation is small to investigate a lot of sedimentary waste, and there is a possibility of causing casualties. This paper deals with the implementation of a high-accuracy marine deposition detection AI model by learning the coastal sediment image data of AI-Hub using the YOLOv5 algorithm suitable for real-time object detection.

  • PDF

A Methodology for Justification and Optimization of Countermeasures for Milk After a Nuclear Accident and Its Application (원자력 사고후 우유에 대한 비상대응의 정당화/최적화를 위한 방법론 및 적용연구)

  • Hwang, Won-Tae;Han, Moon-Hee;Kim, Eun-Han;Cho, Gyu-Seong
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.4
    • /
    • pp.243-249
    • /
    • 1998
  • The methodology for justification and optimization of the countermeasures related with contamination management of milk was designed based on the cost and benefit analysis. The application results were discussed for the deposition on August 15, when pasture is fully developed in Korean agricultural conditions. A dynamic food chain model DYNACON was used to estimate the time-dependent radioactivity of milk after the deposition. The considered countermeasures are (1) the ban of milk consumption (2) the substitution of clean fodder, which are effective in reducing the ingestion dose as well as simple and easy to carry out in the first year after the deposition. The total costs of the countermeasures were quantitatively estimated in terms of cost equivalent of doses and monetary costs. It is obvious that a fast reaction after the deposition is an important factor in cost effectiveness of the countermeasures. In most cases, the substitution of clean fodder was more effective countermeasure than the ban of consumption. A fast reaction after the deposition made longer justifiable/optimal duration of the countermeasure.

  • PDF