• 제목/요약/키워드: deposited layer

검색결과 2,401건 처리시간 0.024초

증류수 계면처리를 이용한 고온초전도체 죠셉슨 접합 제작 (HTS Josephson Junctions with Deionized Water Treated Interface)

  • 문승현;박완규;계정일;박주도;오병두
    • Progress in Superconductivity
    • /
    • 제2권2호
    • /
    • pp.76-80
    • /
    • 2001
  • We have fabricated YBa$_2$Cu$_3$$O_{7-x}$ (YBCO) ramp-edge Josephson junctions by modifying ramp edges of the base electrodes without depositing any artificial barrier layer. YBa$_2$Cu$_3$O/7-x//SrTiO$_3$ (YBCO/STO) films were deposited on SrTiO$_3$(100) by on-axis KrF laser deposition. After patterning the bottom YBCO/STO layer, the ramp edge was cleaned by ion-beam and then reacted with deionized water under various conditions prior to the deposition of counter-electrode layers. The top YBCO/STO layer was deposited and patterned by photolithography and ion milling. We measured current-voltage (I-V) characteristics, magnetic field modulation of the critical current at 77 K. Some showed resistively shunted junction (RSJ)-type I-V characteristics, while others exhibited flux-flow behaviors, depending on the dipping time of the ramp edge in deionized water. Junctions fabricated using optimized conditions showed fairly uniform distribution of junction parameters such as I$_{c}$R$_{n}$ values, which were about 0.16 mV at 77 K with 1$\sigma$~ 24%. We made a dc SQUID with the same deionized water treated junctions, and it showed the sinusoidal modulation under applied magnetic field at 77 K. 77 K.

  • PDF

Fabrication of Hierarchical Nanostructures Using Vacuum Cluster System

  • Lee, Jun-Young;Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.389-390
    • /
    • 2012
  • In this study, we fabricate a superhydrophobic surface made of hierarchical nanostructures that combine wax crystalline structure with moth-eye structure using vacuum cluster system and measure their hydrophobicity and durability. Since the lotus effect was found, much work has been done on studying self-cleaning surface for decades. The surface of lotus leaf consists of multi-level layers of micro scale papillose epidermal cells and epicuticular wax crystalloids [1]. This hierarchical structure has superhydrophobic property because the sufficiently rough surface allows air pockets to form easily below the liquid, the so-called Cassie state, so that the relatively small area of water/solid interface makes the energetic cost associated with corresponding water/air interfaces smaller than the energy gained [2]. Various nanostructures have been reported for fabricating the self-cleaning surface but in general, they have the problem of low durability. More than two nanostructures on a surface can be integrated together to increase hydrophobicity and durability of the surface as in the lotus leaf [3,5]. As one of the bio-inspired nanostructures, we introduce a hierarchical nanostructure fabricated with a high vacuum cluster system. A hierarchical nanostructure is a combination of moth-eye structure with an average pitch of 300 nm and height of 700 nm, and the wax crystalline structure with an average width and height of 200 nm. The moth-eye structure is fabricated with deep reactive ion etching (DRIE) process. $SiO_2$ layer is initially deposited on a glass substrate using PECVD in the cluster system. Then, Au seed layer is deposited for a few second using DC sputtering process to provide stochastic mask for etching the underlying $SiO_2$ layer with ICP-RIE so that moth-eye structure can be fabricated. Additionally, n-hexatriacontane paraffin wax ($C_{36}H_{74}$) is deposited on the moth-eye structure in a thermal evaporator and self-recrystallized at $40^{\circ}C$ for 4h [4]. All of steps are conducted utilizing vacuum cluster system to minimize the contamination. The water contact angles are measured by tensiometer. The morphology of the surface is characterized using SEM and AFM and the reflectance is measured by spectrophotometer.

  • PDF

Atomic Layer Deposition of Al2O3 Thin Films Using Dimethyl Aluminum sec-Butoxide and H2O Molecules

  • Jang, Byeonghyeon;Kim, Soo-Hyun
    • 한국재료학회지
    • /
    • 제26권8호
    • /
    • pp.430-437
    • /
    • 2016
  • Aluminum oxide ($Al_2O_3$) thin films were grown by atomic layer deposition (ALD) using a new Al metalorganic precursor, dimethyl aluminum sec-butoxide ($C_{12}H_{30}Al_2O_2$), and water vapor ($H_2O$) as the reactant at deposition temperatures ranging from 150 to $300^{\circ}C$. The ALD process showed typical self-limited film growth with precursor and reactant pulsing time at $250^{\circ}C$; the growth rate was 0.095 nm/cycle, with no incubation cycle. This is relatively lower and more controllable than the growth rate in the typical $ALD-Al_2O_3$ process, which uses trimethyl aluminum (TMA) and shows a growth rate of 0.11 nm/cycle. The as-deposited $ALD-Al_2O_3$ film was amorphous; X-ray diffraction and transmission electron microscopy confirmed that its amorphous state was maintained even after annealing at $1000^{\circ}C$. The refractive index of the $ALD-Al_2O_3$ films ranged from 1.45 to 1.67; these values were dependent on the deposition temperature. X-ray photoelectron spectroscopy showed that the $ALD-Al_2O_3$ films deposited at $250^{\circ}C$ were stoichiometric, with no carbon impurity. The step coverage of the $ALD-Al_2O_3$ film was perfect, at approximately 100%, at the dual trench structure, with an aspect ratio of approximately 6.3 (top opening size of 40 nm). With capacitance-voltage measurements of the $Al/ALD-Al_2O_3/p-Si$ structure, the dielectric constant of the $ALD-Al_2O_3$ films deposited at $250^{\circ}C$ was determined to be ~8.1, with a leakage current density on the order of $10^{-8}A/cm^2$ at 1 V.

Mg0.1Zn0.9O/ZnO 활성층 구조의 박막트랜지스터 연구 (A Study of Thin-Film Transistor with Mg0.1Zn0.9O/ZnO Active Structure)

  • 이종훈;김홍승;장낙원;윤영
    • 한국전기전자재료학회논문지
    • /
    • 제27권7호
    • /
    • pp.472-476
    • /
    • 2014
  • We report the characteristics of thin-film transistor (TFT) to make the bi-channel structure with stacked $Mg_{0.1}Zn_{0.9}O$ (Mg= 10 at.%) and ZnO. The ZnO and $Mg_{0.1}ZnO_{0.9}O$ thin films were deposited by radio frequency (RF) co-sputter system onto the thermally oxidized silicon substrate. A total thickness of active layer was 50 nm. Firstly, the ZnO thin films were deposited to control the thickness from 5 nm to 30 nm. Sequentially, the $Mg_{0.1}ZnO_{0.9}O$ thin films were deposited to change from 45 nm to 20 nm. The bi-layer TFT shows more improved properties than the single layer TFT. The field effect mobility and subthreshold slope for $Mg_{0.1}ZnO_{0.9}O$/ZnO-TFT are $7.40cm^2V^{-1}s^{-1}$ and 0.24 V/decade at the ZnO thickness of 10 nm, respectively.

Mo 패턴을 이용한 3-D 구조의 Cu2ZnSn (SxSe1-x)4 (CZTSSe) 박막형 태양전지 제작 (3-D Structured Cu2ZnSn (SxSe1-x)4 (CZTSSe) Thin Film Solar Cells by Mo Pattern using Photolithography)

  • 조은진;강명길;신형호;윤재호;문종하;김진혁
    • Current Photovoltaic Research
    • /
    • 제5권1호
    • /
    • pp.20-24
    • /
    • 2017
  • Recently, three-dimensional (3D) light harvesting structures are highly attracted because of their high light harvesting capacity and charge collection efficiencies. In this study, we have fabricated $Cu_2ZnSn(S_xSe_{1-x})_4$ based 3D thin film solar cells on PR patterned Molybdenum (Mo) substrates using photolithography technique. Specifically, Mo patterns were deposited on PR patterned Mo substrates by sputtering and the thin Cu-Zn-Sn stacked layer was deposited over this Mo patterns by sputtering technique. The stacked Zn-Sn-Cu precursor thin films were sulfo-selenized to form CZTSSe pattern. Finally, CZTSSe absorbers were coated with thin CdS layer using chemical bath deposition and ZnO window layer was deposited over CZTSSe/CdS using DC sputtering technique. Fabricated 3-D solar cells were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF) analysis, Field-emission scanning electron microscopy (FE-SEM) to study their structural, compositional and morphological properties, respectively. The 3% efficiency is achieved for this kind of solar cell. Further efforts will be carried out to improve the performance of solar cell through various optimizations.

핫 엠보싱용 점착방지막으로 사용되는 10nm급 두께의 Teflon-like 박막의 형성 및 특성평가 (The Deposition and Characterization of 10 nm Thick Teflon-like Anti-stiction Films for the Hot Embossing)

  • 차남구;김인권;박창화;임현우;박진구
    • 한국재료학회지
    • /
    • 제15권3호
    • /
    • pp.149-154
    • /
    • 2005
  • Teflon like fluorocarbon thin films have been deposited on silicon and oxide molds as an antistiction layer for the hot embossing process by an inductively coupled plasma (ICP) chemical vapor deposition (CVD) method. The process was performed at $C_4F_8$ gas flow rate of 2 sccm and 30 W of plasma power as a function of substrate temperature. The thickness of film was measured by a spectroscopic ellipsometry. These films were left in a vacuum oven of 100, 200 and $300^{\circ}C$ for a week. The change of film thickness, contact angle and adhesion and friction force was measured before and after the thermal test. No degradation of film was observed when films were treated at $100^{\circ}C$. The heat treatment of films at 200 and $300^{\circ}C$ caused the reduction of contact angles and film thickness in both silicon and oxide samples. Higher adhesion and friction forces of films were also measured on films treated at higher temperatures than $100^{\circ}C$. No differences on film properties were found when films were deposited on either silicon or oxide. A 100 nm silicon template with 1 to $500\;{\mu}m$ patterns was used for the hot embossing process on $4.5\;{\mu}m$ thick PMMA spun coated silicon wafers. The antistiction layer of 10 nm was deposited on the silicon mold. No stiction or damages were found on PMMA surfaces even after 30 times of hot embossing at $200^{\circ}C$ and 10 kN.

PECVD 법에 의해 제작된 저굴절률 차이 평판 SiON광도파로 (Low Index Contrast Planar SiON Waveguides Deposited by PECVD)

  • 김용탁;윤석규;윤대호
    • 한국세라믹학회지
    • /
    • 제42권3호
    • /
    • pp.178-181
    • /
    • 2005
  • Silicon oxynitride (SiON) 막은 플라즈마 화학기상증착법(PECVD)으로 $SiH_4,\;N_2O$$N_2$ 가스를 사용하여 $SiO_2/Si$ 위해 증착되었다. 증착 변수에 따라서 SiON 막의 굴절률은 prism coupler를 사용하여 1552nm 파장에서 $1.4480\~1.4958$까지 변화하였다. 평판 광도파로 코어로 사용되는 SiON 막의 두께는 $6{\mu}m$이고, buffer 막과의 굴절률 차이(An)는 $0.36\%$이다. 또한 식각 공정으로 $SiO_2$ 막 위에 증착된 SiON 막은 건식식각을 통해서 수행되었다. 광화이버에 $1.55{\mu}m$ 파장의 레이저론 입력단에 조사하였다. 결과적으로 저굴절률 차이 SiON 광도파로를 제작하였으며, 출력단에서 single-mode 형상을 확인하였다.

Al/LB/Al, Au/LB/Au 전극 구조에서 arachidic acid LB막의 전기적 특성에 관한 비교 연구 (A comparative study of electrical properties of arachidic acid LB films in the Al/LB/Al and Au/LB/Au electrode structure)

  • 오세중;김정수
    • 대한전기학회논문지
    • /
    • 제44권10호
    • /
    • pp.1311-1316
    • /
    • 1995
  • The electrical properties of the Langmuir-Blodgett (LB) films layered with arachidic acid were studied at the room temperature. The sample was formed with 2 different structure ; One was Al/LB/Al and the other was Au/LB/Au. The precise structure of Al/LB/Al was considered as Al/Al$_{2}$O$_{3}$/LB/Al, because the natural oxide layer was formed on surface of lower Al electrode. The electrical conductivity of Al/Al$_{2}$O$_{3}$/LB/Al structure was determined the value of 3.5 * 10$^{-14}$ S/cm from the measurement of current-voltage (I-V) characteristics. The sample with the structure of Au/LB/Au was made to eliminate the influence of oxide layer in the electrical properties of the LB films. The short circuit current was observed in this sample from the I-V characteristics. To verify the reason of short circuit current generation, copper decoration method was employed to the 15 layers of LB films deposited on the Al and Au electrode each. The defects were shown on the films deposited with Au electrode. This results means that the defects on the LB films which layered with the Au electrode were contributed to the short circuit current. Several films (15, 31, 51, 71L) were deposited on the Au electrode and measured the size of defects with the copper decoration method. The size of defects becomes smaller as the film layer was increased. We conclude that the existence of defects affects the short circuit current generation.

  • PDF

CO2가스를 이용하여 증착된 터널층의 계면포획밀도의 감소와 이를 적용한 저전력비휘발성 메모리 특성 (Decrease of Interface Trap Density of Deposited Tunneling Layer Using CO2 Gas and Characteristics of Non-volatile Memory for Low Power Consumption)

  • 이소진;장경수;;김태용;이준신
    • 한국전기전자재료학회논문지
    • /
    • 제29권7호
    • /
    • pp.394-399
    • /
    • 2016
  • The silicon dioxide ($SiO_2$) was deposited using various gas as oxygen and nitrous oxide ($N_2O$) in nowadays. In order to improve electrical characteristics and the interface state density ($D_{it}$) in low temperature, It was deposited with carbon dioxide ($CO_2$) and silane ($SiH_4$) gas by inductively coupled plasma chemical vapor deposition (ICP-CVD). Each $D_{it}$ of $SiO_2$ using $CO_2$ and $N_2O$ gas was $1.30{\times}10^{10}cm^{-2}{\cdot}eV^{-1}$ and $3.31{\times}10^{10}cm^{-2}{\cdot}eV^{-1}$. It showed $SiO_2$ using $CO_2$ gas was about 2.55 times better than $N_2O$ gas. After 10 years when the thin film was applied to metal/insulator/semiconductor(MIS)-nonvolatile memory(NVM), MIS NVM using $SiO_2$($CO_2$) on tunneling layer had window memory of 2.16 V with 60% retention at bias voltage from +16 V to -19 V. However, MIS NVM applied $SiO_2$($N_2O$) to tunneling layer had 2.48 V with 61% retention at bias voltage from +20 V to -24 V. The results show $SiO_2$ using $CO_2$ decrease the $D_{it}$ and it improves the operating voltage.

열처리가 Al-Mg 코팅 강판의 내식성에 미치는 영향 (Effect of Heat Treatment on the Corrosion Resistance of the Al-Mg Coated Steel Sheet)

  • 정재훈;양지훈;송민아;김성환;정재인;이명훈
    • 한국표면공학회지
    • /
    • 제47권4호
    • /
    • pp.186-191
    • /
    • 2014
  • Double layer films which consisted of aluminum(Al) and magnesium(Mg) have been prepared by e-beam deposition. The structure, alloy phase, and corrosion resistance of the prepared films were investigated before and after heat treatment. The first (bottom) layer fixed with Al, and the thickness ratio between Al and Mg layers has been changed from 1 : 1 to 5 : 1, respectively. Total thickness of Al-Mg film was fixed at $3{\mu}m$. The cold-rolled steel sheet was used as a substrate. Heat treatment was fulfilled in an nitrogen atmosphere at the temperature of $400^{\circ}C$ for 2, 3 and 10 min. Surface morphology of as-deposited Al-Mg film having Mg top layer showed plate-like structure. The morphology was not changed even after heat treatment. However, cross-sectional morphology of Al-Mg films was drastically changed after heat treatment, especially for the samples heat treated for 10 min. The morphology of as-deposited films showed columnar structure, while featureless structure of the films appeared after heat treatment. The x-ray diffraction data for as-deposited Al-Mg films showed only pure Al and Mg peaks. However, Al-Mg alloy peaks such as $Al_3Mg_2$ and $Al_{12}Mg_{17}$ appeared after heat treatment of the films. It is believed that the formation of Al-Mg alloy phase affected the structure change of Al-Mg film. It was found that the corrosion resistance of Al-Mg film was increased after heat treatment.