• Title/Summary/Keyword: deposited layer

Search Result 2,397, Processing Time 0.028 seconds

ZnO Nanoparticle Based Dye-Sensitized Solar Cells Devices Fabricated Utilizing Hydropolymer at Low Temperature (저온에서 Hydropolymer를 이용한 ZnO 나노입자 염료 감응형 태양전지)

  • Kwon, Byoung-Wook;Son, Dong-Ick;Park, Dong-Hee;Yang, Jeong-Do;Choi, Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.483-487
    • /
    • 2010
  • To fabricate $TiO_2$ nanoparticle-based dye sensitized solar cells (DSSCs) at a low-temperature, DSSCs were fabricated using hydropolymer and ZnO nanoparticles composites for the electron transport layer around a low-temperature ($200^{\circ}C$). ZnO nanoparticle with 20 nm and 60 nm diameter were used and Pt was deposited as a counter electrode on ITO/glass using an RF magnetron sputtering. We investigate the effect of ZnO nanoparticle concentration in hydropolymer and ZnO nanoparticle solution on the photoconversion performance of the low temperature fabricated ($200^{\circ}C$) DSSCs. Using cis-bis(isothiocyanato)bis(2,20 bipyridy1-4,40 dicarboxylato) ruthenium (II) bis-tetrabutylammonium (N719) dye as a sensitizer, the corresponding device performance and photo-physical characteristics are investigated through conventional physical characterization techniques. The effect of thickness of the ZnO photoelectrode and the morphology of the ZnO nanoparticles with the variations of hydropolymer to ZnO ratio on the photoconversion performance are also investigated. The morphology of the ZnO layer after sintering was examined using a field emission scanning electron microscope (FE-SEM). 60 nm ZnO nanoparticle DSSCs showed an incident photon-to-current conversion efficiency (IPCE) value of about 7% higher than that of 20 nm ZnO nanoparticle DSSCs. The maximum parameters of the short circuit current density ($J_{sc}$), the open circuit potential ($V_{oc}$), fill factor (ff), and efficiency ($\eta$) in the 60 nm ZnO nanoparticle-based DSSC devices were 4.93 mA/$cm^2$, 0.56V, 0.40, and 1.12%, respectively.

Fabrication of Capacitive-Type Humidity Sensor with Poly(p-phenylene ether sulfone) (폴리(페닐렌에테르설폰)을 이용한 용량형 습도센서의 제조)

  • Cho, Jae-Ick;Choi, Kyoon;Kim, Chang-Jung;Kim, Byung-Ik;Park, Sueng-Hyun;Bang, Gi-Suk
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.207-209
    • /
    • 2006
  • We fabricated a capacitive-type humidity sensor using poly (p-phenylene ether sulfone: PES) as a humidity sensitive layer. The PES was dissolved in m-cresol $(CH_3C_6H_4OH)$ and spin-coated on ITO-coated glass substrate. Gold was deposited by sputtering as a water-permeable upper electrode. The capacitance of the sensor was inversely proportional to sensing film thicknesses and showed an excellent linearity of less than 1% in the humidity range of 20 to 90%. The sensor haying a $1.4{\mu}m$ sensing layer showed a hysteresis of 1.3% and a good sensitivity of 1.14 at 20 kHz.

Factors affecting passivation of Cu(Mg) alloy film (Cu(Mg) alloy의 산화방지막 형성에 영향을 미치는 인자)

  • 조흥렬;조범석;이원희;이재갑
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.144-149
    • /
    • 2000
  • Variables affecting the passivation capability of Cu(Mg) alloy films, which were sputter deposited from a Cu (4.5 at. %) target, have been investigated. The results show that the passivation capability of a Cu(Mg) alloy film is a function of annealing temperature, $O_2$ pressure, and Mg content in the film. Increasing the annealing temperature up to $500^{\circ}C$ favors formation of a dense MgO layer on the surface which has a growth limited thickness of 150 $\AA$. Decreasing the $O_2$ pressure enhances the preferential oxidation of Mg over Cu. Furthermore, increasing the Mg content in the Cu(Mg) film promotes formation of a dense MgO layer. Vacuum pre-annealing was found to be very effective in segregating Mg to the surface, facilitating the passivation capability of the Cu(Mg) alloy film even when the Mg content is low. In the current study, self-aligned MgO layers with low resistivity and an effective passivation capability over the Cu surface, have been obtained by manipulating these factors when Cu(Mg) thin films are annealed.

  • PDF

Preparation and Interface Characteristics of $PbTiO_3$ Ferroelectric Thin Film (강유전성 $PbTiO_3$ 박막의 형성 및 계면특성)

  • Hur, Chang-Wu;Lee, Moon-Key;Kim, Bong-Ryul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.7
    • /
    • pp.83-89
    • /
    • 1989
  • Ferroelectric $PbTiO_3$ thin film is deposited with rf sputtering at substrate temperature of $100-150^{\circ}C$. It is found that this has pyrochlore structure of amorphous type by X-ray diffractive analysis. Thermal annealing has excellent characteristics at $550^{\circ}C$ and laser annealing has best crystalline structure in case of scanning with 50 watts. Interface states in MFST and MFOST structure with a $PbTiO_3$ ferroelectric thin film gate have been investigated from analysis of C-V data. The interface states density has been drastically reduced by inserting an oxide layer between ferroelectric and semiconductor. The observed effect increase feasibility of employing ferroelectric thin films such as nonvolatile memory field effect transistor, IR optical FET, and Image Devices with a ferroelectric layer.

  • PDF

Effect of Fcrromagnetic Layer and Magnetoresistance Behavior of Co-Evaporated Ag-CoFe Nano-Granular Alloy Films (Ag - CoFe 합금박막의 자기저항 및 강자성 상하지층의 효과)

  • 김용혁;이성래
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.6
    • /
    • pp.308-313
    • /
    • 1997
  • The magnetoresistance (MR) and the saturation field behavior of the CoFe-Ag nano granular films as a function of the ferromagnetic underlayer and overlayer materials were investigated. The maximum MR ratio of 25.7 % and the saturation field of 2.1 kOe in the as-deposited 3000 $\AA$ $(Co_{92}Fe_8)_{31}Ag_{69}$ single alloy films at room temperature were obtained. The MR ratio and the saturation field of the 100 $\AA$ alloy film were 1.2 % and 5.2 kOe, respectively. Those of the sandwiched alloy films of 200 $\AA$ thick with the Fe under and overlayer of 100 $\AA$ were 11 % and 1.8 kOe respectively. The reduction of saturation field in the sandwiched alloy films is due to the exchange coupling between the ferromagnetic layers and the alloy layer. Among the Fe and FeNi, the more effective materials to reduce the saturation field of the sandwiched alloy films was Fe.

  • PDF

High-Temperature Fracture Strength of a CVD-SiC Coating Layer for TRISO Nuclear Fuel Particles by a Micro-Tensile Test

  • Lee, Hyun Min;Park, Kwi-Il;Park, Ji-Yeon;Kim, Weon-Ju;Kim, Do Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.441-448
    • /
    • 2015
  • Silicon carbide (SiC) coatings for tri-isotropic (TRISO) nuclear fuel particles were fabricated using a chemical vapor deposition (CVD) process onto graphite. A micro-tensile-testing system was developed for the mechanical characterization of SiC coatings at high temperatures. The fracture strength of the SiC coatings was characterized by the developed micro-tensile test in the range of $25^{\circ}C$ to $1000^{\circ}C$. Two types of CVD-SiC films were prepared for the micro-tensile test. SiC-A exhibited a large grain size (0.4 ~ 0.6 m) and the [111] preferred orientation, while SiC-B had a small grain size (0.2 ~ 0.3 mm) and the [220] preferred orientation. Free silicon (Si) was co-deposited onto SiC-B, and stacking faults also existed in the SiC-B structure. The fracture strengths of the CVD-SiC coatings, as measured by the high-temperature micro-tensile test, decreased with the testing temperature. The high-temperature fracture strengths of CVD-SiC coatings were related to the microstructure and defects of the CVD-SiC coatings.

Structural and Corrosive Properties of ZrO2 Thin Films using N2O as a Reactive Gas by RF Reactive Magnetron Sputtering (N2O 반응 가스를 주입한 RF Reactive Magnetron Sputtering에 의한 ZrO2 박막의 구조 및 부식특성 연구)

  • Jee, Seung-Hyun;Lee, Seok-Hee;Baek, Jong-Hyuk;Kim, Jun-Hwan;Yoon, Young-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.69-73
    • /
    • 2011
  • A $ZrO_2$ thin film as a corrosion protective layer was deposited on Zircaloy-4 (Z-4) clad material using $N_2O$ as a reactive gas by RF reactive magnetron sputtering at room temperature. The Z-4 substrate was located in plasma or out of plasma during the $ZrO_2$ deposition process to investigate mechanical and corrosive properties for the plasma immersion. Tetragonal and monoclinic phases were existed in $ZrO_2$ thin film immersed in plasma. We observed that a grain size of the $ZrO_2$ thin film immersed in plasma state is larger than that of the $ZrO_2$ thin film out of plasma state. In addition, the corrosive property of the $ZrO_2$ thin films in the plasma was characterized using the weight gains of Z-4 after the corrosion test. Compared with the $ZrO_2$ thin film immersed out of plasma, the weight gains of $ZrO_2$ thin film immersed in plasma were larger. These results indicate that the $ZrO_2$ film with the tetragonal phase in the $ZrO_2$ can protect the Z-4 from corrosive phenomena.

Study on Water Vapor and Oxygen Transmission Rates in Inorganic Composite Films to improvement life-time of OLEDs (유기EL의 수명향상을 위한 혼합무기박막의 투습율 및 투산소율 특성 연구)

  • Kim, Young-Min;Lee, Joo-Won;Kim, Jong-Moo;Park, Jung-Soo;Sung, Man-Young;Jang, Jin;Ju, Byeong-Kwon;Kim, Jai-Kyeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.189-192
    • /
    • 2004
  • To improvement life-time of the organic light emitting diodes(OLEDs). We investigate the inorganic composite film based on MgO and $SiO_2$ to protect from the moisture and oxygen. The inorganic composite films are added the base materials to the co-operate materials using the mixed process and it is deposited on plastic substrate by e-beam evaporator. In order to analyze as kinds of inorganic materials, Water Vapor method of Transmission Rate (WVTR) and Oxygen Transmission Rate (OTR) are measured by Permatran equipment(MOCON Corp.). For comparison. an MgD- and $SiO_2$-based composite film has lower values of WVTR and OTR than inorganic composite/compound films of ones. The results obtained here shows that this film is suitable for passivation layer to extend the life-time of OLEDs.

  • PDF

Cost-effective surface passication layers by RTP and PECVD (RTP 와 PECVD을 이용한 저가의 표면 passivation 막들의 특성연구)

  • Lee, Ji-Youn;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.142-145
    • /
    • 2004
  • In this work, we have investigated the application of rapid thermal processing (RTP) and plasma enhanced chemical vapour deposition (PECVD) for surface passivation. Rapid thermal oxidation (RTO) has sufficiently low surface recombination velocities (SRV) $S_{eff}$ in spite of a thin oxides and short process time. The effective lifetime is increasing with an increase of the oxide thickness. In the same oxide thickness, The effective lifetime is independent on the process temperature and time. $S_{eff,max}$ is exponentially decreased with increasing oxide thickness. $S_{eff,max}$ can be reduced to 200 cm/s with only 10 nm oxide thickness. On the other hand, three different types of SiN are reviewed. SiN1 layer has a thickness of about 72 nm and a refractive index of 2.8. Also, The SiN1 has a high passivation quality. The effective lifetime and SRV of 1 $\Omega$ cm Float zone (FZ) silicon deposited with SiN1 is about 800 s and under 10 cm/s, respectively. The SiN2 is optimized for the use as an antireflection layer since a refractive index of 2.3. The SiN3 is almost amorphous silicon caused by less contents of N2 from total process. The effective lifetime on the FZ 1 ${\Omega}cm$ is over 1000 ${\mu}s$.

  • PDF

Optimization of Growth Gases for the Low-temperature Synthesis of Carbon Nanotubes (탄소나노튜브의 저온성장을 위한 합성가스의 최적화 연구)

  • Kim, Young-Rae;Jeon, Hong-Jun;Lee, Han-Sung;Goak, Jeung-Choon;Hwang, Ho-Soo;Kong, Byung-Yun;Lee, Nae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.4
    • /
    • pp.342-349
    • /
    • 2009
  • This study investigated the growth characteristics of carbon nanotubes (CNTs) by changing a period of annealing time and a $C_{2}H_{2}/H_2$ flow ratio at temperature as low as $450^{\circ}C$ with inductively coupled plasma chemical vapor deposition. The 1-nm-thick Fe-Ni-Co alloy thin film served as a catalyst layer for the growth of CNTs, which was thermally evaporated on the 15-nm-thick Al underlayer deposited on the 50-nm-thick Ti diffusion barrier. The annealing at low temperature of $450^{\circ}C$ brought about almost no granulation of the catalyst layer, and the CNT growth was not affected by a period of annealing time. A study of changing the flow rate of $C_{2}H_{2}$ and $H_2$ showed that as the ratio of the $C_{2}H_{2}$ flow rate to the $H_2$ flow rate was lowered, the CNTs were grown to be longer With further decreasing the flow ratio, the length of CNTs reached the maximum and then became shorter. Under the optimized gas flow rates, we successfully synthesized CNTs with a uniform length over a 4-inch Si wafer at $450^{\circ}C$.