• 제목/요약/키워드: denture base resin

검색결과 178건 처리시간 0.027초

광중합형 이장재와 금속의치상 간의 결합력에 관한 연구 (A Study on the Tensile Strength between Light-cured Relining Resin and Metal Denture Base)

  • 박인채;이준규;정재헌
    • 구강회복응용과학지
    • /
    • 제16권3호
    • /
    • pp.211-220
    • /
    • 2000
  • The use of autopolymerizing-cured resin and light-cured resin for direct relining of complete and partial dentures has been popular. This investigation compared the adhesion of autopolymerizing-cured reline resin(Tokuso Rebase, Mild Rebaron) or light-cured reline resin(Mild Rebaron LC, Lighton-U) to metal base or resin base. Cylindrical samples were made from metal($Biosil^{(R)}$) or heat-cured resin(QC-20) and were prepared to produce a flat bonding surface. Cylindrical metal samples were roughened by scratch or by scratch and sandblast and were treated with primer(MR Bond) after scratch and sandblast. And then, liners were prossesed to the cylindrical metal or resin samples according to the manufacturer's recommendations so as to bond metal base or resin base. The specimens were tested in pure tension by using an Instron Univesal testing machine for the four direct reline resins. The results were as follows ; 1. In comparison with tensile bond strength of material relined on resin base or metal base, the case of resin base produced significantly higher tensile bond strength than the case of metal base. 2. Metal surface pretreatment or primer improved the tensile bond strength between the reline resin and the metal($Biosil^{(R)}$) base. 3. The tensile bond strength of Mild Rebaron LC relined on resin base or metal base were similar to those of the other reline resins.

  • PDF

광중합형 이장재와 금속의치상 간의 결합력에 관한 연구 (A Study on the Tensile Strength between Light-cured Relining Resin and Metal Denture Base)

  • 박인채;이준규;정재헌
    • 구강회복응용과학지
    • /
    • 제16권2호
    • /
    • pp.161-170
    • /
    • 2000
  • The use of autopolymerizing-cured resin and light-cured resin for direct relining of complete and partial dentures has been popular. This investigation compared the adhesion of autopolymerizing-cured reline resin(Tokuso Rebase, Mild Rebaron) or light-cured reline resin(Mild Rebaron LC, Lighton-U) to metal base or resin base. Cylindrical samples were made from metal($Biosil^{(R)}$) or heat-cured resin(QC-20) and were prepared to produce a flat bonding surface. Cylindrical metal samples were roughened by scratch or by scratch and sandblast and were treated with primer(MR Bond) after scratch and sandblast. And then, liners were prossesed to the cylindrical metal or resin samples according to the manufacturer's recomendations so as to bond metal base or resin base. The specimens were tested in pure tension by using an Instron Univasal testing machine for the four direct reline resins. The results were as follows ; 1. In comparison with tensile bond strength of material relined on resin base or metal base, the case of resin base produced significantly higher tensile bond strengths than the case of metal base. 2. Metal surface pretreatment or primer improved the tensile bond strength between the reline resin and the metal($Biosil^{(R)}$) base. 3. The tensile bond strengths of Mild Rebaron LC relined on resin base or metal base were similar to those of the other reline resins.

  • PDF

수종 레진으로 의치상 조직면 개조시 의치상의 크기변화와 물리적 성질 및 표면상태 비교 연구 (AN EXPERIMENTAL STUDY ON THE DIMENSIONAL CHANGES OF RELINED DENTURES AND MECHANICAL PROPERTIES AND SURFACE TEXTURES OF SEVERAL RESINS USED IN DENTURE RELINING)

  • 이창한;김영수
    • 대한치과보철학회지
    • /
    • 제28권1호
    • /
    • pp.25-41
    • /
    • 1990
  • The purpose of this study was to evaluate and compare the dimensional changes of relined dentures with a light-curing resin, a heat-curing resin, and a direct, hard reline resin. And also to measure the transverse strength, impact strength, surface hardness of the three resins used in relining. The surface textures of three resins also of evaluated by using scanning electron microscope. Through analyses on the data from this study, the following conclusions were obtained. 1. Impact strength of heat-curing resin was highest, and direct, hard reline resin higher, light-curing resin lowest. 2. Transverse strength of heat-curing resin was highest, and direct, hard reline resin and light-curing resin was lower and not signiicantly different. 3. Surface hardness of light-curing resin was lighest, heat-curing resin higher, and direct, hard reline resin was lowest. 4. After storage of the relined dentures for 1 day and 1 week in water at room temperature, linear shrinkage of distance between the reference points in the maxillary base relined with direct, hard reline resin was lowest, and those relined with light-curing resin and heat-curing resin were lower and were not significantly different. 5. After storage for 4 weeks in orator at room tempeature, linear shrinkage of distance between ridge crests of dentures relined with heat-curing resin was highest and that of distance between denture borders was not significantly different. 6. The dimensional changes of relined dentures during storage in water was not significant except those of distance between denture borders relined with light-curing resin at 1 day and 1 week storage in water. 7. At low magnification (x40) of SEM examination, the surface textures of three resins were similar except light-curing resin which had some defects. At high magnification (x200), the surface textures of hard, direct reline resin were smooth with little defects, but those of heat-curing resin and light-curing resin w ere irregular.

  • PDF

표면 처리법에 따른 치과용 합금과 열중합형 레진 간의 결합 강도에 관한 연구 (EFFECT OF SURFACE TREATMENTS ON THE BOND STRENGTH OF DENTURE BASE RESINS TO DENTAL ALLOY)

  • 이주희;정은민;장복숙;정동준;허성주;한동후;심준성
    • 대한치과보철학회지
    • /
    • 제40권4호
    • /
    • pp.344-351
    • /
    • 2002
  • The purpose of this study is to compare tensile bond strength between Cr-Co alloy and three denture base resins after surface treatment. Following the manufacturer's instructions, 180 bonded specimens were made from three denture base resins (Lucitone 199. Paladent 20. POSS resin) and three surface treatment methods (sandblasting. metal primer. silicoating) 20 samples were made in each group and a half was ther-mocycled 1000 times between $5^{\circ}C$ and $55^{\circ}C$. The tensile bond strength was measured using an Instron with 5mm/min crosshead speed. Data was analyzed with one-way ANOVA, T-test and Duncan test. The results were as follows : 1. Samples with metal primer coating had significantly high tensile bond strength than the other surface treated groups (p<.05). Significantly low tensile bond strength was shown in sand blasted groups (p<.05). 2. No significant difference was observed in metal primer coating groups before and after ther-mocycling (p>.05) 3. Tensile bond strength was decreased in silicoated samples after thermocycling (p<.05). 4. Of the surface treated groups with metal primer, Lucitone 199 had the greatest bond strength and POSS resin and Paladent 20 were followed (p<.05). 5. Of the surface treated groups with silicoating, POSS resin and Lucitone 199 had greater bond strength than Paladent 20 (p<.05).

Effect of fiber reinforcement on impact strength of heat polymerized polymethyl methacrylate denture base resin: in vitro study and SEM analysis

  • Mowade, Tushar Krishnarao;Dange, Shankar Pandurang;Thakre, Mrunali Balkrushna;Kamble, Vaibhav Deorao
    • The Journal of Advanced Prosthodontics
    • /
    • 제4권1호
    • /
    • pp.30-36
    • /
    • 2012
  • PURPOSE. The aim of this in-vitro investigation was to describe the effect of reinforcement with different fibers on impact strength of heat polymerized poly-methyl methacrylate (PMMA) denture base resin and to analyze the effect of surface treatment of the fibers on the impact strength. MATERIALS AND METHODS. The specimens were fabricated from the dies formed as per standard ASTM D4812. 2% by weight of glass, polyethylene and polypropylene fibers were incorporated in the PMMA resin. The Izod impact testing was performed on the unnotched specimens and the values obtained were analyzed using appropriate one way ANOVA, followed by unpaired t-test. Fractured ends of the samples were subjected to the SEM analysis. RESULTS. The polypropylene fibers with plasma treatment showed the highest impact strength ($9.229{\times}10^2$ J/m) followed by the plasma treated polyethylene fibers ($9.096{\times}10^2$ J/m), untreated polypropylene fibers ($8.697{\times}10^2$ J/m), untreated polyethylene fibers ($7.580{\times}10^2$ J/m), silane treated glass fibers ($6.448{\times}10^2$ J/m) and untreated glass fibers ($5.764{\times}10^2$ J/m). Also the surface treatment of all the fibers has shown the significant improvement in impact strength. Findings of the SEM analysis justified the improvement in impact strength after surface treatment. CONCLUSION. Reinforcement with the fiber is an effective method to increase the impact strength of PMMA denture base resin. The surface treatment of fibers further increases the impact strength significantly.

STRENGTH OF GLASS FIBER REINFORCED PMMA RESIN AND SURFACE ROUGHNESS CHANGE AFTER ABRASION TEST

  • Lee, Sang-Il;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo;Yun, Suk-Dae
    • 대한치과보철학회지
    • /
    • 제45권3호
    • /
    • pp.310-320
    • /
    • 2007
  • Statement of the problem. The fracture of acrylic resin dentures remains an unsolved problem. Therefore, many investigations have been performed and various approaches to strengthening acrylic resin, for example, the reinforcement of heat-cured acrylic resin using glass fibers, have been suggested over the years. But problems such as poor workability, rough surface, poor adhesion of glass fiber resin complex are not solved yet. Purpose. The aim of the present study was to investigate the effect of short glass fibers on the transverse strength of heat-polymerized denture base acrylic resin and roughness of resin complex after abrasion test. Material and methods. To avoid fiber bunching and achieve even fiber distribution, glass fiber bundles were mixed with acrylic resin powder in conventional mixer with a non-cutting blade, to produce the glass fiber($10{\mu}m$ diameter, 3mm length, silane treated) resin composite. Glass fibers were incorporated at 0%, 3%, 6% and 9% by weight. Transverse strength were measured. After abrasion test, surface roughness was evaluated and scanning electron microscope view was taken for clinical application. Results. 1. 6% and 9% incorporation of 3mm glass fibers in the acrylic resin enhanced the transverse strength of the test specimens(p<0.05). 2. Before abrasion test, incorporation of 0%, 3%, 9% glass fiber in the resin showed no dirrerence in roughness statisticaly(p>0.05). 3. After abrasion test, incorporation of 0%, 3%, 6% glass fiber in the resin showed same surface roughness value statistically(p>0.05). 4. In SEM, surface roughness increased as the percentage of the fibers increased. 5. In the areas where glass fiber bunchings are formated, a remarkably high roughness was noticed. Conclusion. 6% and 9% addition of silane-treated short glass fibers into denture base acrylic resin increased transverse strength significantly. Before and after abrasion test, incorporation of 0%, 3%, 6% glass fiber in the resin showed same surface roughness value statistically.

의치상 직접 이장레진의 색조 안정성 (THE COLOR STABILITY OF DIRECT DENTURE RELINE RESINS)

  • 강은숙;전영찬;정창모
    • 대한치과보철학회지
    • /
    • 제41권2호
    • /
    • pp.160-168
    • /
    • 2003
  • Statement of problem : Direct denture reline resins tend to discolor during service in the oral environment by intrinsic and extrinsic factor. Purpose : This study was designed to evaluate the color stability of direct denture reline resins. Material and methods : Mild Rebaron(GC Corp., Japan), Meta Base M(Sun medical Co., Japan), Mild Rebaron LC(GC Corp., Japan) and as a control group, Vertex SC(Dentimex Zeist, Holland) were chosen for this study. Ten specimens of each direct denture reline resins were fabricated. Treatment methods designed for this study were the coffee staining test(7days) and the accelerated aging test(100hours). The color changes before and after treatment were measured by Tristimulous colorimeter(Yasuda seiki seisakusho, Ltd. Japan) and analyzed. Results All the direct denture reline resins subjected to the coffee staining test and the accelerated aging test showed noticible difference in color change. After coffee staining test, Meta Base M showed the highest color change followed by Vertex SC. Mild Rebaron LC and Mild Rebaron. There were no statistical differences between Meta Base M and Vertex SC and between Mild Rebaron LC and Mild Rebaron(p>0.05). After accelerated aging test. Mild Rebaron LC showed the highest color change followed by Vertex SC, Meta Base M and Mild Rebaron. There were no statistical differences only between Mild Rebaron and Mata Base M(p>0.05) but among the others, there were statistical differences(p<0.05). Conclusion : Within the limitation of this study, all the direct denture reline resins subjected to the extrinsic and intrinsic factors showed noticible difference in color change, and there were differences among manufacturers.

아크릴릭 레진 의치상 강화에 관한 실험적 연구 (AN EXPERIMENTAL STUDY ON REINFORCEMENT OF ACRYLIC RESIN DENTURE BASE)

  • 김형식;김창회;김영수
    • 대한치과보철학회지
    • /
    • 제32권3호
    • /
    • pp.411-430
    • /
    • 1994
  • The denture may be fractured accidentally by an impact while outside the mouth, or may be cracked or broken while in service in the mouth. The latter is generally a fatigue failure caused by repeated flexure over a period of time. This investigation compared the flexural fatigue resistance, the impact force and the transverse strength of two denture base materials with and without the grid strengthener, the T300, the T800 and the Kevlar fiber to evaluate the fracture resistance. The distribution and behavior of fibers across fracture lines were examined by Hi-Scope Compact Microvision System. Through analyses of the data from this study, the following conclusions were obtained. 1. The flexural fatigue resistance, impact strength and transverse strength of high impact strength resin were higher than those of conventional heat polymerizing resin, but statistically there was no significant difference(p>0.05). 2. All specimens with and without the grid strengthener did not show significant differences in the flexural fatigue, the impact and the transverse strength test(p>0.05). 3. All specimens reinforced with the T300, the T800 and the Kevlar fiber showed significant increase of the fatigue resistance and the impact force(p<0.05). 4. All specimens reinforced with the T800 and the Kevlar fiber showed significant increase of the transverse strength(p<0.05). 5. All specimens reinforced with the T300, the T800 and the Kevlar fiber exhibited greenstick fractures. The fibers tended to remain enveloped in the resin, resisting pull-out.

  • PDF

가철성 의치의 유지관리 (Maintenance care for removable denture)

  • 조리라
    • 대한치과의사협회지
    • /
    • 제54권12호
    • /
    • pp.996-1023
    • /
    • 2016
  • There are many kinds of maintenance care services for removable denture patient. Adjustment of the denture base and occlusion should be performed regularly not only for pain relief but also for maintaining the denture function. Direct and indirect relining are needed frequently in specific cases including mandibular distal extension case or non-symmetric residual teeth situation. Surface treatments for metal and resin are essential in the relining procedure. Clinical process for the denture repair is similar to indirect relining which needs inter-occlusal registration. Especially, the peridontal maintenance care and caries prevention are most important way to preserve the abutment teeth in partial edentulism. Moreover, the caring method for the denture and the tissue should be instructed to the denture patient.

  • PDF

적층가공과 절삭가공으로 제작한 의치상과 직접 첨상용 레진 간의 인장결합강도 비교 (Tensile bond strength of chairside reline resin to denture bases fabricated by subtractive and additive manufacturing)

  • 김효성;정지혜;배지명;김정미;김유리
    • 대한치과보철학회지
    • /
    • 제58권3호
    • /
    • pp.177-184
    • /
    • 2020
  • 목적:본 연구의 목적은 절삭가공과 적층가공으로 제작한 의치상과 직접 첨상용 레진과의 인장결합강도를 열중합형 의치상과 직접 첨상용 레진의 인장 결합강도와 비교 및 평가하여 절삭가공과 적층가공으로 제작한 의치상의 직접 첨상을 임상에 활용하고자 하는 것이다. 재료 및 방법:열중합형 의치상 레진(Lucitone 199), 절삭가공용 의치상 레진(VITA VIONIC BASE), 적층가공용 의치상 레진(NextDent Base)을 이용해 가로 25 mm × 세로 25 mm × 높이 3 mm의 직육면체 형태로 제작하였다. 제작한 의치상 레진 시편을 30일간 37℃ 증류수에 보관한 뒤, 건조하여 자가중합형 polyethyl methacrylate (PEMA) 직접 첨상용 레진(REBASE II Normal)을 사용해 결합하였다. 절삭가공과 적층가공용 의치상 레진을 실험군으로, 열중합형 의치상 레진을 대조군으로 설정하고 각 군 당 10개의 시편을 제작하였다. 모든 시편을 24시간 동안 37℃ 증류수에 보관한 뒤 꺼내어 만능시험기를 이용해 10 mm/min의 cross head speed로 인장결합강도를 측정하였고, 파절 양상을 관찰하여 접착 파절, 응집 파절, 혼합 파절로 분류하였다. 의치상의 제작 방법에 따른 직접 첨상용 레진과의 인장결합강도를 일원배치 분산분석으로 분석하였고 사후검정(Bonferroni's method)을 시행하였다 (α= .05). 결과:절삭가공용 의치상 레진과 직접 첨상용 레진과의 인장결합강도(2.33 ± 0.39 MPa)는 열중합형 의치상과 직접 첨상용 레진과의 인장결합강도(2.45 ± 0.39 MPa)와 통계적으로 유의성 있는 차이가 없었다 (P > .999). 적층가공한 의치상 레진과 직접 첨상용 레진과의 인장결합강도(1.23 ± 0.36 MPa)는 나머지 두 군보다 유의성 있게 낮았다 (P < .001). 열중합형과 절삭가공한 의치상에서는 혼합 파절이 가장 많이 나타났으며, 적층가공한 의치상에서는 혼합 파절과 접착 파절이 동일한 빈도로 나타났다. 결론:직접 첨상용 레진과 다양한 방법으로 제작한 의치상의 인장결합강도를 비교하였을 때 적층가공으로 제작한 의치상은 절삭가공으로 제작한 의치상, 열중합형 의치상보다 유의하게 낮은 인장결합강도를 보였다.