• Title/Summary/Keyword: dendritic cell (DC)

Search Result 105, Processing Time 0.027 seconds

Rat Hindlimb Allotransplantation with Short-term Immune Suppressants and Dendritic Cell Pretreatment (단기간 면역억제제와 수지상 세포주의 전처치를 이용한 복합조직 동종이식)

  • Eun, Seok-Chan;Baek, Rong-Min
    • Archives of Reconstructive Microsurgery
    • /
    • v.21 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • Prevention of acute rejection in composite tissue allotransplantation without continuous immunosuppression lacks reports in worldwide literature. Recently dendritic cells (DC) gained considerble attention as antigen presenting cells that are also capable of immunologic tolerance induction. This study assesses the effect of alloantigen-pulsed dendritic cells in induction of survival in a rat hindlimb allograft. We performed hindlimb allotransplantation between donor Sprague-Dawley and recipient Fischer344 rats. Recipient derived dendritic cells were harvested from rat whole blood and cultured with anti-inflammatory cytokine IL-10. Then donor-specific alloantigen pulsed dendritic cells were reinjected into subcutaneous tissue before limb transplantation. Groups: I) untreated (n=6), II) DC injected (n=6), III) Immunosuppressant (FK-506, 2 mg/Kg) injected (n=6), IV) DC and immunouppressant injected (n=6). Graft appearance challenges were assessed postoperatively. Observation of graft appearance, H-E staning, immunohistochemical (IHC) study, and confocal immunofluoreiscece were performed postoperatively. Donor antigen pulsed host dendritic cell combined with short-term immunosuppression showed minimal mononuclear cell infiltration, regulator T cell presence, and could prolong limb allograft survival.

  • PDF

Use of Cell-Penetrating Peptides in Dendritic Cell-Based Vaccination

  • Sangho Lim;Ja-Hyun Koo;Je-Min Choi
    • IMMUNE NETWORK
    • /
    • v.16 no.1
    • /
    • pp.33-43
    • /
    • 2016
  • Cell-penetrating peptides (CPPs) are short amino acids that have been widely used to deliver macromolecules such as proteins, peptides, DNA, or RNA, to control cellular behavior for therapeutic purposes. CPPs have been used to treat immunological diseases through the delivery of immune modulatory molecules in vivo. Their intracellular delivery efficiency is highly synergistic with the cellular characteristics of the dendritic cells (DCs), which actively uptake foreign antigens. DC-based vaccines are primarily generated by pulsing DCs ex vivo with various immunomodulatory antigens. CPP conjugation to antigens would increase DC uptake as well as antigen processing and presentation on both MHC class II and MHC class I molecules, leading to antigen specific CD4+ and CD8+ T cell responses. CPP-antigen based DC vaccination is considered a promising tool for cancer immunotherapy due to the enhanced CTL response. In this review, we discuss the various applications of CPPs in immune modulation and DC vaccination, and highlight the advantages and limitations of the current CPP-based DC vaccination.

The Effectiveness of IL-12 Administration and Fusion on Tumor Antigen Sensitization Methods for Dendritic Cells Derived from Patients with Myelogenous Leukemia (골수성백혈병에서 배양한 수지상세포(Dendritic Cell)에 대한 종양항원 감작법으로 IL-12 첨가와 융합법의 효과)

  • Kim, Kee Won;Park, Suk Young;Hong, Young Seon
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.38-43
    • /
    • 2004
  • Backgroud: Immunotherapy using dendritic cells (DC) loaded with tumor antigens may represent a potentially effective method for inducing antitumor immunity. We evaluated the effectiveness of DC-based antitumor immune response in various conditions. Methods: DC were cultured from peripheral blood mononuclear cells (PBMNC) in myelogenous leukemia (ML) and lysates of autologous leukemic cells are used as tumor antigen. The effectiveness of interleukin-12 (IL-12) and CD40L (CD154) on the antigen presenting function of lysates-loaded DC was analyzed by proliferation, cytokine production, and cytotoxicity tests with activated PBMNC (mainly lymphocytes). For generating antigen-loaded DC, direct fusion of DC with ML was studied. Results: Antigen loaded DC induced significantly effective antitumor immune response against autologous leukemic cells. Administration of IL-12 on the DC based antitumor immune response showed higher proliferation activity, IFN-$\gamma$ production, and cytotoxic activity of PBMNC. Also, fused cell has a potent antitumor immune response. Conclusion: We conclude that lysates-loaded DC with IL-12 may be effectively utilized as inducer of antitumor immune reaction in ML and in vivo application with DC-based antitumor immunotherapy or tumor vaccination seems to be feasible.

Helper T Cell Polarizing Through Dendritic Cells (수지상세포를 통한 조력 T세포의 분화 - 알레르기 질환을 중심으로 -)

  • Han, Manyong
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.1
    • /
    • pp.6-12
    • /
    • 2005
  • In the last few years, a spectrum of dendritic cells(DCs), including toll like receptors(TLRs), might play a critical role in regulating allergy and asthma. DC plays a central role in initiating immune responses, linking innate and adaptive responses to pathogen. Human peripheral blood has three non-overlapping dendritic subset that expressed various 11 TLRs. These dendritic subsets and TLR contribute significant polarizing influences on T helper differentiation, but how this comes about is less clear. A better understanding of DC immunobiology may lead to the comprehension of allergy pathophysiology to prevent early stage allergic march.

Induction of Functional Changes of Dendritic Cells by Silica Nanoparticles

  • Kang, Kyeong-Ah;Lim, Jong-Seok
    • IMMUNE NETWORK
    • /
    • v.12 no.3
    • /
    • pp.104-112
    • /
    • 2012
  • Silica is one of the most abundant compounds found in nature. Immoderate exposure to crystalline silica has been linked to pulmonary disease and crystalline silica has been classified as a Group I carcinogen. Ultrafine (diameter <100 nm) silica particles may have different toxicological properties compared to larger particles. We evaluated the effect of ultrafine silica nanoparticles on mouse bone marrow-derived dendritic cells (BMDC) and murine dendritic cell line, DC2.4. The exposure of dendritic cells (DCs) to ultrafine silica nanoparticles showed a decrease in cell viability and an induction of cell death in size- and concentration-dependent manners. In addition, in order to examine the phenotypic changes of DCs following co-culture with silica nanoparticles, we added each sized-silica nanoparticle along with GM-CSF and IL-4 during and after DC differentiation. Expression of CD11c, a typical DC marker, and multiple surface molecules such as CD54, CD80, CD86, MHC class II, was changed by silica nanoparticles in a size-dependent manner. We also found that silica nanoparticles affect inflammatory response in DCs in vitro and in vivo. Finally, we found that p38 and NF-${\kappa}B$ activation may be critical for the inflammatory response by silica nanoparticles. Our data demonstrate that ultrafine silica nanoparticles have cytotoxic effects on dendritic cells and immune modulation effects in vitro and in vivo.

Differentiation Induction of Dendritic Cell Phenotypes from Human Leukemic Cell Lines

  • Lee, Dae-Heui;Park, Jae-Sun;Eo, Wan-Kyu;Kim, Woo-Mi;Kang, Koo-Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.79-86
    • /
    • 2001
  • Recent clinical studies have shown that a high proportion of patients with acute promyelocytic leukemia (APL) achieve complete remission after treatment with all-trans retinoic acid (ATRA). However, most patients who receive continuous treatment with ATRA relapse and develop ATRA-resistant leukemia. Dendritic cells (DCs) are important antigen-presenting cells in the development of antileukemic T-cell responses. In this study, we investigated the strategies to overcome ATRA resistance of APL cells by inducing the differentiation of DCs from human leukemic cell lines for the developtment of adoptive immunotherapy. CD83 was used as a mature DC marker in this study and the expression of CD83 mRNA was determined by RT-PCR method. The promyelocytic leukemic cell line HL-60, B lymphoblast cell lines RPMI 7666 and NC-37 could be induced to dendritic cells in vitro. Treatment of HL-60 with phorbol 12-myristate 13-acetate (PMA) resulted in the expression of myeloid-related DC phenotypes, while treatment of RPMI 7666 with fms-like tyrosine kinase 3 ligand (Flt3-ligand, FL) and treatment of NC-37 with PMA and FL led to the expression of lymphoid-related DC phenotypes. In conclusion, myeloid-related DC phenotypes and lymphoid-related DC phenotypes could be generated from HL-60, NC-37 and RPMI 7666 cell lines, respectively. These DC phenotypes can potentially be used to generate antileukemic T cells in vitro for adoptive immunotherapy.

  • PDF

Dendritic Cell-based Immunotherapy for Rheumatoid Arthritis: from Bench to Bedside

  • Md. Selim Ahmed;Yong-Soo Bae
    • IMMUNE NETWORK
    • /
    • v.16 no.1
    • /
    • pp.44-51
    • /
    • 2016
  • Dendritic cells (DCs) are professional antigen presenting cells, and play an important role in the induction of antigen-specific adaptive immunity. However, some DC populations are involved in immune regulation and immune tolerance. These DC populations are believed to take part in the control of immune exaggeration and immune disorder, and maintain immune homeostasis in the body. Tolerogenic DCs (tolDCs) can be generated in vitro by genetic or pharmacological modification or by controlling the maturation stages of cytokine-derived DCs. These tolDCs have been investigated for the treatment of rheumatoid arthritis (RA) in experimental animal models. In the last decade, several in vitro and in vivo approaches have been translated into clinical trials. As of 2015, three tolDC trials for RA are on the list of ClinicalTrial.gov (www.clinicaltrials.gov). Other trials for RA are in progress and will be listed soon. In this review, we discuss the evolution of tolDC-based immunotherapy for RA and its limitations and future prospects.

The Effect of Mesenchymal Stem Cells on the Activation of Dendritic Cells in the Cell Culture Insert System (세포배양삽입체계(Cell Culture Insert System)에서 중간엽 줄기세포(Mesenchymal Stem Cell)가 수지상세포(Dendritic Cell)의 활성화에 미치는 영향)

  • Kim, Kee Won;Park, Suk Young;Lee, Kyung Bock;Kim, Hyun-su
    • IMMUNE NETWORK
    • /
    • v.4 no.2
    • /
    • pp.88-93
    • /
    • 2004
  • Background: Bone marrow mesenchymal stem cells (MSC) inhibit the immune response of lymphocytes to specific antigens and dendritic cells (DC) are professional antigenpresenting cells whose function is to present antigen to naive T-lymphocytes with high efficiency and play a central role in the regulation of immune response. We studied the effects of MSC on DC to evaluate the relationship between MSC and DC in transplantation immunology. Methods: MSC were expanded from the bone marrow and DC were cultured from peripheral blood mononuclear cells (PBMNC) of 6 myelogenous leukemia after achieving complete response. Responder cells isolated from PBMNC and lysates of autologous leukemic cells are used as tumor antigen. The effect of MSC on the DC was analyzed by immunophenotype properties of DC and by proliferative capacity and the amount of cytokine production with activated PBMNC against the allogeneic lymphocytes. Also, cytotoxicity tests against leukemic cells studied to evaluate the immunologic effect of MSC on the DC. Results: MSC inhibit the CD83 and HLA-class II molecules of antigen-loaded DC. The proliferative capacity and the amount of INF-$\gamma$ production of lymphocytes to allogeneic lymphocytes were decreased in DC co-cultured with MSC. Also the cytotoxic activity of lymphocytes against leukemic cells was decreased in DC co-cultured with MSC. Conclusion: MSC inhibit the activation and immune response of DC induced by allogeneic or tumor antigen.

(Dendritic cells in the skin) (피부의 수상돌기 세포)

  • 이민걸
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.2
    • /
    • pp.35-44
    • /
    • 1999
  • Dendritic cells(DC) are a system of highly efficient antigen-presenting cells that initiate the primary immune response. There are two kinds of dendritic cells in the skin, Langerhans cell in the epidermis and dermal dendritic cell in the dermis. The knowledge of DC, which are very important in the immune reponse of cancer, autoimmune disease, transplantation and infection, has been known through the study about Langerhans cells. In this paper, the role of Langerhans cell in the contact hypersensitivity and atopic dermatitis is discussed and culture methods of mouse Langerhans cells and human U from pheripheral blood monocytes are described.

  • PDF

Cellular Mechanism of Newly Synthesized Indoledione Derivative-induced Immunological Death of Tumor Cell

  • Oh, Su-Jin;Ryu, Chung-Kyu;Baek, So-Young;Lee, Hyun-Ah
    • IMMUNE NETWORK
    • /
    • v.11 no.6
    • /
    • pp.383-389
    • /
    • 2011
  • Background: EY-6 is one of the newly synthesized indoledione derivatives to induce tumor cell-specific cell death. In this study, we investigated the mechanism of immunological death induced by EY-6 at mouse colon cancer cell as well as at the normal immune cell represented by dendritic cell. Methods: C57BL/6 mouse syngeneic colon cancer cell MC38 was treated with EY-6, and analyzed by MTT for viability test, flow cytometry for confirming surface expressing molecules and ELISA for detection of cytokine secretion. Normal myeloid-dendritic cell (DC) was ex vivo cultured from bone marrow hematopoietic stem cells of C57BL/6 mice with GM-CSF and IL-4 to analyze the DC uptake of dead tumor cells and to observe the effect of EY-6 on the normal DC. Results: EY-6 killed the MC38 tumor cells in a dose dependent manner (25, 50 and $100{\mu}M$) with carleticulin induction. And EY-6 induced the secretion of IFN-${\gamma}$ but not of TNF-${\alpha}$ from the MC38 tumor cells. EY-6 did not kill the ex-vivo cultured DCs at the dose killing tumor cells and did slightly but not significantly induced the DC maturation. The OVA-specific cross-presentation ability of DC was not induced by chemical treatment (both MHC II and MHC I-restricted antigen presentation). Conclusion: Data indicate that the EY-6 induced tumor cell specific and immunological cell death by modulation of tumor cell phenotype and cytokine secretion favoring induction of specific immunity eliminating tumor cells.