Browse > Article
http://dx.doi.org/10.4110/in.2012.12.3.104

Induction of Functional Changes of Dendritic Cells by Silica Nanoparticles  

Kang, Kyeong-Ah (Department of Biological Science and the Research Center for Women's Disease, Sookmyung Women's University)
Lim, Jong-Seok (Department of Biological Science and the Research Center for Women's Disease, Sookmyung Women's University)
Publication Information
IMMUNE NETWORK / v.12, no.3, 2012 , pp. 104-112 More about this Journal
Abstract
Silica is one of the most abundant compounds found in nature. Immoderate exposure to crystalline silica has been linked to pulmonary disease and crystalline silica has been classified as a Group I carcinogen. Ultrafine (diameter <100 nm) silica particles may have different toxicological properties compared to larger particles. We evaluated the effect of ultrafine silica nanoparticles on mouse bone marrow-derived dendritic cells (BMDC) and murine dendritic cell line, DC2.4. The exposure of dendritic cells (DCs) to ultrafine silica nanoparticles showed a decrease in cell viability and an induction of cell death in size- and concentration-dependent manners. In addition, in order to examine the phenotypic changes of DCs following co-culture with silica nanoparticles, we added each sized-silica nanoparticle along with GM-CSF and IL-4 during and after DC differentiation. Expression of CD11c, a typical DC marker, and multiple surface molecules such as CD54, CD80, CD86, MHC class II, was changed by silica nanoparticles in a size-dependent manner. We also found that silica nanoparticles affect inflammatory response in DCs in vitro and in vivo. Finally, we found that p38 and NF-${\kappa}B$ activation may be critical for the inflammatory response by silica nanoparticles. Our data demonstrate that ultrafine silica nanoparticles have cytotoxic effects on dendritic cells and immune modulation effects in vitro and in vivo.
Keywords
Silica nanoparticles; Dendritic cells; Apoptosis; Inflammatory response;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chen, M., and A. von Mikecz. 2005. Formation of nucleoplasmic protein aggregates impairs nuclear function in response to $SiO_{2}$ nanoparticles. Exp. Cell Res. 305: 51-62.   DOI   ScienceOn
2 Pan, Z., W. Lee, L. Slutsky, R. A. Clark, N. Pernodet, and M. H. Rafailovich. 2009. Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small 5: 511-520.   DOI   ScienceOn
3 Foley, S., C. Crowley, M. Smaihi, C. Bonfils, B. F. Erlanger, P. Seta, and C. Larroque. 2002. Biochem. Biophys. Res. Commun. 294: 116-119.   DOI   ScienceOn
4 Oberdorster, E. 2004. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. 112: 1058-1062.   DOI   ScienceOn
5 Vallhov, H., S. Gabrielsson, M. Stromme, A. Scheynius, and A. E. Garcia-Bennett. 2007. Mesoporous silica particles induce size dependent effects on human dendritic cells. Nano Lett. 7: 3576-3582.   DOI   ScienceOn
6 Cho, W. S., M. Choi, B. S. Han, M. Cho, J. Oh, K. Park, S. J. Kim, S. H. Kim, and J. Jeong. 2007. Inflammatory mediators induced by intratracheal instillation of ultrafine amorphous silica particles. Toxicol. Lett. 175: 24-33.   DOI   ScienceOn
7 Huang, D. M., T. H. Chung, Y. Hung, F. Lu, S. H. Wu, C. Y. Mou, M. Yao, and Y. C. Chen. 2008. Internalization of mesoporous silica nanoparticles induces transient but not sufficient osteogenic signals in human mesenchymal stem cells. Toxicol. Appl. Pharmacol. 231: 208-215.   DOI   ScienceOn
8 Wang, J. J., B. J. Sanderson, and H. Wang. 2007. Cytotoxicity and genotoxicity of ultrafine crystalline SiO2 particulate in cultured human lymphoblastoid cells. Environ. Mol. Mutagen. 48: 151-157.   DOI   ScienceOn
9 Park, E. J., and K. Park. 2009. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol. Lett. 184: 18-25.   DOI   ScienceOn
10 Fubini, B., and A. Hubbard. 2003. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic. Biol. Med. 34: 1507-1516.   DOI   ScienceOn
11 Warheit, D. B., T. A. McHugh, and M. A. Hartsky. 1995. Differential pulmonary responses in rats inhaling crystalline, colloidal or amorphous silica dusts. Scand. J. Work Environ. Health 21(Suppl 2): 19-21.
12 Leigh, J., H. Wang, A. Bonin, M. Peters, and X. Ruan. 1997. Silica-induced apoptosis in alveolar and granulomatous cells in vivo. Environ. Health. Perspect. 105(Suppl 5): 1241-1245.   DOI   ScienceOn
13 Banchereau, J., and R. M. Steinman. 1998. Dendritic cells and the control of immunity. Nature 392: 245-252.   DOI   ScienceOn
14 Banchereau, J., F. Briere, C. Caux, J. Davoust, S. Lebecque, Y. J. Liu, B. Pulendran, and K. Palucka. 2000. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18: 767-811.   DOI   ScienceOn
15 Blanco, P., A. K. Palucka, V. Pascual, and J. Banchereau. 2008. Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev. 19: 41-52.   DOI   ScienceOn
16 Kang, K., H. Kim, K. I. Kim, Y. Yang, D. Y. Yoon, J. H. Kim, J. H. Ryu, E. J. Noh, S. D. Jeon, and J. S. Lim. 2008. SK-126, a synthetic compound, regulates the production of inflammatory cytokines induced by LPS in antigen-presenting cells. Biochem. Pharmacol. 75: 1054-1064.   DOI   ScienceOn
17 Heath, W. R., G. T. Belz, G. M. Behrens, C. M. Smith, S. P. Forehan, I. A. Parish, G. M. Davey, N. S. Wilson, F. R. Carbone, and J. A. Villadangos. 2004. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol. Rev. 199: 9-26.   DOI   ScienceOn
18 Reis e Sousa, C. 2006. Dendritic cells in a mature age. Nat. Rev. Immunol. 6: 476-483.   DOI   ScienceOn
19 Shen, Z., G. Reznikoff, G. Dranoff, and K. L. Rock. 1997. Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J. Immunol. 158: 2723-2730.
20 Inaba, K., M. Inaba, N. Romani, H. Aya, M. Deguchi, S. Ikehara, S. Muramatsu, and R. M. Steinman. 1992. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176: 1693-1702.   DOI   ScienceOn
21 Worle-Knirsch, J. M., K. Pulskamp, and H. F. Krug. 2006. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett. 6: 1261-1268.   DOI   ScienceOn
22 Laaksonen, T., H. Santos, H. Vihola, J. Salonen, J. Riikonen, T. Heikkila, L. Peltonen, N. Kumar, D. Y. Murzin, V. P. Lehto, and J. Hirvonen. 2007. Failure of MTT as a toxicity testing agent for mesoporous silicon microparticles. Chem. Res. Toxicol. 20: 1913-1918.   DOI   ScienceOn
23 Kowalczyk, D. W., A. P. Wlazlo, M. Blaszczyk-Thurin, Z. Q. Xiang, W. Giles-Davis, and H. C. Ertl. 2001. A method that allows easy characterization of tumor-infiltrating lymphocytes. J. Immunol. Methods 253: 163-175.   DOI   ScienceOn
24 Curiel, T. J., P. Cheng, P. Mottram, X. Alvarez, L. Moons, M. Evdemon-Hogan, S. Wei, L. Zou, I. Kryczek, G. Hoyle, A. Lackner, P. Carmeliet, and W. Zou. 2004. Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res. 64: 5535-5538.   DOI   ScienceOn
25 Saudemont, A., N. Jouy, D. Hetuin, and B. Quesnel. 2005. NK cells that are activated by CXCL10 can kill dormant tumor cells that resist CTL-mediated lysis and can express B7-H1 that stimulates T cells. Blood 105: 2428-2435.   DOI   ScienceOn
26 Kang, K., D. H. Lim, I. H. Choi, T. Kang, K. Lee, E. Y. Moon, Y. Yang, M. S. Lee, and J. S. Lim. 2011. Vascular tube formation and angiogenesis induced by polyvinylpyrrolidone- coated silver nanoparticles. Toxicol. Lett. 205: 227-234.   DOI   ScienceOn
27 Hansen, S. F., E. S. Michelson, A. Kamper, P. Borling, F. Stuer-Lauridsen, and A. Baun. 2008. Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology 17: 438-447.   DOI   ScienceOn
28 Passagne, I., M. Morille, M. Rousset, I. Pujalté, and B. L􀙗azou. 2012. Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells. Toxicology 299: 112-124.   DOI   ScienceOn
29 Waters, K. M., L. M. Masiello, R. C. Zangar, B. J. Tarasevich, N. J. Karin, R. D. Quesenberry, S. Bandyopadhyay, J. G. Teeguarden, J. G. Pounds, and B. D. Thrall. 2009. Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol. Sci. 107: 553-569.   DOI
30 Napierska, D., L. C. Thomassen, V. Rabolli, D. Lison, L. Gonzalez, M. Kirsch-Volders, J. A. Martens, and P. H. Hoet. 2009. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5: 846-853.   DOI   ScienceOn
31 Lin, W., Y. W. Huang, X. D. Zhou, and Y. Ma. 2006. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol. Appl. Pharmacol. 217: 252-259.   DOI   ScienceOn
32 Cha, K. E., and H. Myung. 2007. Cytotoxic effects of nanoparticles assessed in vitro and in vivo. J. Microbiol. Biotechnol. 17: 1573-1578.
33 Choi, S. J., J. M. Oh, and J. H. Choy. 2009. Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells. J. Inorg. Biochem. 103: 463-471.   DOI   ScienceOn
34 Carlson, C., S. M. Hussain, A. M. Schrand, L. K. Braydich-Stolle, K. L. Hess, R. L. Jones, and J. J. Schlager. 2008. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B. 112: 13608-13619.   DOI   ScienceOn
35 Park, E. J., J. Yi, K. H. Chung, D. Y. Ryu, J. Choi, and K. Park. 2008. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol. Lett. 180: 222-229.   DOI   ScienceOn
36 Herzog, E., H. J. Byrne, A. Casey, M. Davoren, A. G. Lenz, K. L. Maier, A. Duschl, and G. J. Oostingh. 2009. SWCNT suppress inflammatory mediator responses in human lung epithelium in vitro. Toxicol. Appl. Pharmacol. 234: 378-390.   DOI   ScienceOn