• Title/Summary/Keyword: dendrite

Search Result 370, Processing Time 0.025 seconds

The Heating Characteristics of Electric Bare Wire Melted by AC Current (AC 전류에 의해 용융된 나전선의 발열 특성)

  • Shong, Kil-Mok;Choi, Chung-Seog;Kim, Hyong-Kon;Kim, Young-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.77-84
    • /
    • 2006
  • For a fire cause judgement this paper describes the heating characteristics of electric bare wire melted by AC current. The cower wires prepared for the experiment were 1.2[mm], 1.6[mm], and 2.0[mm] in diameter. Through the cross section analysis(CSA), it was confirmed that the dendrite structure grew at the angle of about 40[$^{\circ}$] or 60[$^{\circ}$] when the fusing current was applied to the wires. The larger the fusing current is, the more decreased the growth angle of the dendrite structure is. It was confirmed that the dendrite structure was arranged like the columnar structure.

Width-Dependent Transition of Magnetic Domain Configuration in Nanostructured CoFe/Pt Multilayered Nanowires

  • Je, Soong-Geun;Lee, Jae-Chul;Kim, Kab-Jin;Min, Byoung-Chul;Shin, Kyung-Ho;Choe, Sug-Bong
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.242-244
    • /
    • 2012
  • We report on the basis of experiments that magnetic domain structures exhibit a transition between single and dendrite domains with respect to the width of ferromagnetic nanowires. This transition is directly observed in CoFe/Pt multilayered nanowires having a width in the range of 580 nm to 4.2 ${\mu}m$ with a magnetic force microscope. Nanowires wider than 1.5 ${\mu}m$ show typical dendrite domain patterns, whereas the nanowires narrower than 690 nm exhibit single domain patterns. The transition occurs gradually between these widths, which are similar to the typical widths of the dendrite domains. Such a transition affects the strength of the domain wall propagation field; this finding was made by using a time-resolved magneto-optical Kerr effect microscope, and shows that the domain wall dynamics also exhibit a transition in accordance with the domain configuration.

Flow Stress and Deformation Behavior of Zr-based Bulk Metallic Glass Composite in Supercooled Liquid Region (Zr계 비정질 복상 합금의 과냉 액상 영역에서의 유동 음력과 변형거동)

  • Jun, H.J.;Lee, K.S.;Chang, Y.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.417-420
    • /
    • 2006
  • The composition and structure of dendrite phase within $Zr_{76.11}Ti_{4.20}Cu_{4.51}Ni_{3.16}Be_{1.49}Nb_{10.53}$ bulk metallic glass (BMG) were confirmed by using an EPMA, XRD and TEM, respectively. The chief elements of dendrite phase were Zr-Ti-Nb and had a BCC structure. The thermal properties of this BMG have been then subsequently investigated by using a differential scanning calorimeter (DSC). The glass transition and crystallization onset temperatures were determined as $339.7^{\circ}C$ and $375.8^{\circ}C$ for this alloy, respectively. Mechanical properties have also been examined by conducting a series of uniaxial compression tests at various temperatures within supercooled liquid region under the strain rates between $10^{-4}/s$ and $3{\times}10^{-2}/s$. The deformation behavior of BMG composite within supercooled liquid region is similar to one of Vit-1 exhibiting amorphous single phase alloy. The flow stresses of BMG composite, however, are entirely higher than those of Vit-1 because dendrite phases are interfere with moving of atoms.

  • PDF

Factors Influencing Edge Dendritic Plating of Steel Sheet in the Electro-Galvanizing Line

  • Du-Hwan Jo;Moonjae Kwon;Doojin Paik;Myungsoo Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.215-220
    • /
    • 2024
  • Recently, the demand for Zn-Ni electrogalvanized steel sheets for home appliances and automobiles is increasing. Products should have a thick plating (30 to 40 g/m2) on both side with a thin thickness (≤ 0.8 mm) and the highest surface quality. By a high current density operation, current is concentrated in the edge part of the steel sheet, resulting in large surface dent defects due to dendritic plating. This can lead to a low productivity due to low line speed operation. To solve this problem, this study aimed to identify factors influencing dendritic plating. A cylindrical electroplating device was manufactured. Effects of cut edge shape and thickness of steel plate, current density, temperature, flow rate, electrolyte concentration, and pH on dendrite generation of Zn-Ni electroplating were examined. To investigate effect of edge shape of the steel sheet, the steel sheet was manufactured using three processing methods: shearing, polishing after shearing, and laser. Relative effects thickness and cut edge processing methods of the steel plate, current density, temperature, flow rate, electrolyte concentration, and pH of plating solution on dendrite plating were investigated. To prevent dendrite plating, an edge mask was manufactured and its application effect was investigated.

Study of the Characteristics and Crystal Growth of a shorted Wire by Overcurrent (과전류에 의해 단락된 전선의 결정성장 특성에 관한 연구)

  • Park, Jin-Young;Bang, Sun-Bae;Ko, Young-Ho
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.83-90
    • /
    • 2017
  • If an overcurrent exceeding the rated value is applied to an electric wire, the temperature of the electric wire increases, and the electric wire covering deteriorates to cause a short circuit. The upper limit temperature of the wire varies according to the magnitude of the overcurrent. When a short circuit occurs at each upper temperature limit, a cooling speed difference occurs during the solidification process due to the temperature difference between the short circuit temperature and the wire surface temperature. At this time, the pattern characteristics of the dendritic structure formed on the molten cross section are different. In this study, the upper temperature limit, which varied according to the overcurrent magnitude, was measured. At the time a short circuit occurred, the second branch spacing (dendrite Arm Spacing : DAS) of the dendrite was analyzed and the numerical value was quantified. The experimental results showed that the upper temperature limit increases with the magnitude of the overcurrent, and that the second branch spacing increases with increasing wire temperature.

Review on Effective Skills to Inhibit Dendrite Growth for Stable Lithium Metal Electrode (리튬금속전극의 덴드라이트 성장 억제 방안의 연구 동향)

  • Kim, Yerang;Park, Jihye;Hwang, Yujin;Jung, Cheolsoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.2
    • /
    • pp.51-68
    • /
    • 2022
  • Although lithium metal batteries have a high energy density, experimental skills capable of solving lots of problems induced by dendrite such as short circuit, low coulomb efficiency, capacity loss, and cycle performance are still only in academic research stage. In this paper, research cases for dendrite growth inhibition on lithium metal electrode were classified into four types: flexible SEI (solid electrolyte interface) layer responding to volume expansion of lithium metal electrode, SEI supporting layer to inhibit dendrite growth physically, SHES (self-healing electrostatic shield) mechanism to adjust lithium growth by leading uniform diffusion of Li+ ions, and finally micro-patterning to induce uniform deposition of lithium. We hope to advance the practical use of lithium metal electrode by analyzing pros and cons of this classification.

Effect of Solutionizing Condition on the Microstructure and Tensile Properties of a Ni-base Superalloy CMSX-4 (Ni기 초내열합금에서 용체화처리 조건에 따른 조직과 인장 특성)

  • Gi Tae Sung;In Yong Chung;Chang Yong Jo;Je Hyun Lee
    • Journal of Korea Foundry Society
    • /
    • v.44 no.2
    • /
    • pp.31-39
    • /
    • 2024
  • Dendrite boundaries and γ/γ' structure of a second generation single crystalline superalloy CMSX-4 almost disappeared during solution treatment above 1310℃. γ' size in the dendrite core was uniform and fine, however, that in the interdendritic region was coarse and nonuniform. With increasing solutionizing temperature and time, γ' size in the interdednritic region became fine and segregation of alloying elements between dendrite core and interdendritic region diminished. Segregation of solid solution strengthening elements such as W, Co, Re in the dendrite core was not fully removed through the heat treatments, especially that of Re still remained to some extent. Tensile properties at room temperature at which does not cause precipitaion of harmful phases, were improved with increasing solutionizing temperature and time.

Two-step Solution Treatment for Enhancement of Mechanical Properties of AlSiCu Aluminum Alloy (Al6Si2Cu 알루미늄 합금의 기계적 물성 향상을 위한 이단계 고용화 열처리)

  • Park, Sang-Gyu;Kim, Chung-Seok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.3
    • /
    • pp.97-103
    • /
    • 2018
  • The objective of this study is to develop the mechanical properties of AlSiCu aluminum alloy by the two-step solution heat treatment. The microstructure of gravity casting specimen represents a typical dendrite structure having a secondary dendrite arm spacing (SDAS) of 40 mm. In addition to the Al matrix, a large amount of coarsen eutectic Si phase, $Al_2Cu$ intermetallic phase, and Fe-rich phases are generated. The eutectic Si phases are fragmented and globularized with solution heat treatment. Also, the $Al_2Cu$ intermetallic phase is resolutionized into the Al matrix. The $2^{nd}$ solution temperature at $525^{\circ}C$ might be a optimum condition for enhancement of mechanical properties of AlSiCu aluminum alloy.

Mechanism of Twin Columnar Growth in Aluminum Alloys (알루미늄 합금의 TCG 조직의 형성기구)

  • Kim, D.K.;Sanders Jr., T.H.
    • Journal of Korea Foundry Society
    • /
    • v.7 no.3
    • /
    • pp.192-198
    • /
    • 1987
  • Commercial semicontinuous cast ingots of aluminum alloys often exhibit large grains composed of parallel arrays of continuous lamellae. Each lamella consists of a central {111} coherent twin boundary and wavy solidification boundary. This microstructure is referred to as a twin columnar growth(TCG) structure. The factors influencing the formation of a TCG structure include a unidirectional thermal gradient and the critical range of the alloying element content. The higher the thermal gradient is, the shorter the twin plane spacings are. The composition profile for an untwinned dendrite shows maximums at the positions of the interdendritic channels and the minimum appears at the center of the dendrite. While for twinned dendrite, it has wavy apperance. This profile has two local minimums instead of one shown in the untwinned.

  • PDF

Numerical Simulation of Dendritic Growth of the Multiple Seeds with Fluid Flow (유체 유동을 동반한 다핵 수치상결정의 미세구조성장에 대한 수치해석적 연구)

  • Yoon, Ik-Roh;Shin, Seung-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.469-476
    • /
    • 2009
  • Most material of engineering interest undergoes solidification process from liquid state. Identifying the underlying mechanism during solidification process is essential to determine the microstructure of material thus the physical properties of final product. In this paper, effect of fluid convection on the dendrite solidification morphology is studied using Level Contour Reconstruction Method. Sharp interface technique is used to implement correct boundary condition for moving solid interface. The results showed good agreement with exact boundary integral solution and compared well with other numerical techniques. Effects of Peclet number and undercooling on growth of dendrite tip of both single and multiple seeds have been also investigated.