DOI QR코드

DOI QR Code

Review on Effective Skills to Inhibit Dendrite Growth for Stable Lithium Metal Electrode

리튬금속전극의 덴드라이트 성장 억제 방안의 연구 동향

  • Kim, Yerang (Department of Chemical Engineering, the University of Seoul) ;
  • Park, Jihye (Department of Chemical Engineering, the University of Seoul) ;
  • Hwang, Yujin (Department of Chemical Engineering, the University of Seoul) ;
  • Jung, Cheolsoo (Department of Chemical Engineering, the University of Seoul)
  • 김예랑 (서울시립대학교 화학공학과) ;
  • 박지혜 (서울시립대학교 화학공학과) ;
  • 황유진 (서울시립대학교 화학공학과) ;
  • 정철수 (서울시립대학교 화학공학과)
  • Received : 2022.02.26
  • Accepted : 2022.04.12
  • Published : 2022.05.31

Abstract

Although lithium metal batteries have a high energy density, experimental skills capable of solving lots of problems induced by dendrite such as short circuit, low coulomb efficiency, capacity loss, and cycle performance are still only in academic research stage. In this paper, research cases for dendrite growth inhibition on lithium metal electrode were classified into four types: flexible SEI (solid electrolyte interface) layer responding to volume expansion of lithium metal electrode, SEI supporting layer to inhibit dendrite growth physically, SHES (self-healing electrostatic shield) mechanism to adjust lithium growth by leading uniform diffusion of Li+ ions, and finally micro-patterning to induce uniform deposition of lithium. We hope to advance the practical use of lithium metal electrode by analyzing pros and cons of this classification.

리튬금속전지는 높은 에너지 밀도를 구현시킬 수 있음에도 불구하고, 단락, 낮은 쿨롱 효율, 용량 손실, 사이클 성능 감소 등의 문제를 초래하는 덴드라이트 성장을 억제시키는 기술은 아직 학술연구 단계에 머물러 있다. 본 논문에서는 최근까지 발표된 리튬금속전극에서 덴드라이트 성장을 억제시킬 수 있는 방법을 4가지로 분류하여 분석해보았다. 즉, 리튬금속전극의 부피 팽창에 대응할 수 있는 유연한 SEI (solid electrolyte interface) 층, 덴드라이트 성장을 물리적으로 억제시킬 수 있는 SEI 지지층, 균일한 리튬 확산을 유도하여 리튬 성장을 조절하는 SHES (self-healing electrostatic shield) 메커니즘, 그리고 리튬의 균일한 전착을 유도하는 마이크로패터닝 등에 대해 연구된 사례들의 장단점을 분석하여, 리튬금속전극의 실용화 연구에 도움을 주고자 한다.

Keywords

Acknowledgement

This work was supported by the 2020 sabbatical year research grant of the University of Seoul.

References

  1. G. N. Lewis and F. G. Keyes, The potential of the lithium electrode, J. Am. Chem. Soc., 35(4), 340-344 (1913). https://doi.org/10.1021/ja02193a004
  2. M. V. Reddy, A. Mauger, C. M. Julien, A. Paolella, and K. Zaghib, Brief history of early lithium-battery development, Materials, 13(8), 1884 (2020). https://doi.org/10.3390/ma13081884
  3. A. Manthiram, A reflection on lithium-ion battery cathode chemistry, Nat. Commun., 11(1), 1-9 (2020). https://doi.org/10.1038/s41467-019-13993-7
  4. C. A. Vincent, Lithium batteries: a 50-year perspective, 1959-2009, Solid State Ionics, 134(1-2), 159-167 (2000). https://doi.org/10.1016/S0167-2738(00)00723-2
  5. Y. Lyu, X. Wu, K. Wang, Z. Feng, T. Cheng, Y. Liu, M. Wang, R. Chen, L. Xu, J. Zhou, Y. Lu, and B. Guo, An overview on the advances of LiCoO2 cathodes for lithium-ion batteries, Adv. Energy Mater., 11(2), 2000982 (2021). https://doi.org/10.1002/aenm.202000982
  6. X.-B. Cheng, R. Zhang, C.-Z. Zhao, and Q. Zhang, Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review', Chem. Rev., 117(15), 10403-10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
  7. Q. Zhang, S. Liu, Y. Lu, L. Xing, and W. Li, Artificial interphases enable dendrite-free li-metal anodes, J. Energy Chem., 58, 198-206 (2021). https://doi.org/10.1016/j.jechem.2020.09.030
  8. D. Luo, L. Zheng, Z. Zhang, M. Li, Z. Chen, R. Cui, Y. Shen, G. Li, R. Feng, S. Zhang, G. Jiang, L. Chen, A. Yu, and X. Wang, Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries' Nat. Commun., 12, 186. (2021). https://doi.org/10.1038/s41467-020-20339-1
  9. L. Ma, J. Cui, S. Yao, X. Liu, Y. Luo, X. Shen, and J.-K. Kim, Dendrite-free lithium metal and sodium metal batteries' Energy Storage Mater., 27, 522-554 (2020). https://doi.org/10.1016/j.ensm.2019.12.014
  10. N. W. Li, Y. Shi, Y. X. Yin, X. X. Zeng, J. Y. Li, C.-J. Li, L.-J. Wan, R. Wen, and Y.-G. Guo, A flexible solid electrolyte interphase layer for long-life lithium metal anodes, Angew. Chem. Int. Ed., 57(6), 1505-1509 (2018). https://doi.org/10.1002/anie.201710806
  11. H. Huo, J. Gao, N. Zhao, D. Zhang, N.G. Holmes, X. Li, Y. Sun, J. Fu, R. Li, X. Guo, and X. Sun, A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries, Nat. Commun., 12(1), 1-10 (2021). https://doi.org/10.1038/s41467-020-20314-w
  12. H. Liu, H. Zhou, B. S. Lee, X. Xing, M. Gonzalez, and P. Liu, Suppressing lithium dendrite growth with a single-component coating, ACS Appl. Mater. Interfaces, 9(36), 30635-30642 (2017). https://doi.org/10.1021/acsami.7b08198
  13. H. Liu, X. Wang, H. Zhou, H. D. Lim, X. Xing, Q. Yan, Y. S. Meng, and P. Liu, Structure and solution dynamics of lithium methyl carbonate as a protective layer for lithium metal, ACS Appl. Energy Mater., 1(5), 1864-1869 (2018). https://doi.org/10.1021/acsaem.8b00348
  14. Y. Yuan, F. Wu, Y. Bai, Y. Li, G. Chen, Z. Wang, and C. Wu, Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode, Energy Storage Mater., 16, 411-418 (2019). https://doi.org/10.1016/j.ensm.2018.06.022
  15. Y. Yuan, F. Wu, G. Chen, Y. Bai, and C. Wu, Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode, J. Energy Chem., 37, 197-203 (2019). https://doi.org/10.1016/j.jechem.2019.03.014
  16. H. Chen, A. Pei, D. Lin, J. Xie, A. Yang, J. Xu, K. Lin, and J. Wang, Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode, Adv. Energy Mater., 9(22), 1900858 (2019). https://doi.org/10.1002/aenm.201900858
  17. F. Liu, L. Wang, Z. Zhang, P. Shi, Y. Feng, Y. Yao, S. Ye, H. Wang, X. Wu, and Y. Yu, A mixed lithium-ion conductive Li2S/Li2Se protection layer for stable lithium metal anode, Adv. Funct. Mater., 30(23), 2001607 (2020). https://doi.org/10.1002/adfm.202001607
  18. J, Yang, C. Hu, Y. Jia, Y. Pang, L. Wang, W. Liu, and X. Sun, Surface restraint synthesis of an organic-inorganic hybrid layer for dendrite-free lithium metal anode, ACS Appl. Mater. Interfaces, 11(9), 8717-8724 (2019). https://doi.org/10.1021/acsami.9b00507
  19. J. Zhu, J. Yang, J. Zhou, T. Zhang, L. Li, J. Wang, and Y. Nuli, A stable organic-inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries, J. Power Sources, 366, 265-269 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.035
  20. G. Li, Q. Huang, X. He, Y. Gao, D. Wang, S. H. Kim, and D. Wang, Self-formed hybrid interphase layer on lithium metal for high-performance lithium-sulfur batteries, ACS Nano, 12(2), 1500-1507 (2018). https://doi.org/10.1021/acsnano.7b08035
  21. G. Li, Y. Gao, X. He, Q. Huang, S. Chen, S. H. Kim, and D. Wang, Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries, Nat. Commun., 8(1), 1-10 (2017). https://doi.org/10.1038/s41467-016-0009-6
  22. Y. Liu, D. Lin, P. Y. Yuen, K. Liu, J. Xie, R. H. Dauskardt, and Y. Cui, An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes, Adv. Mater., 29(10), 1605531 (2017). https://doi.org/10.1002/adma.201605531
  23. B. Zhu, Y. Jin, X. Hu, Q. Zheng, S. Zhang, Qi. Wang, and J. Zhu, Poly (dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes, Adv. Mater., 29(2), 1603755 (2017). https://doi.org/10.1002/adma.201603755
  24. S. Lee, D. Seok, Y. Jeong, and H. Sohn, Surface Modification of Li metal electrode with PDMS/GO composite thin film: Controlled growth of Li layer and improved performance of lithium metal battery (LMB), Membr. J., 30(1), 38-45 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.1.38
  25. H. Lee, D. J. Lee, Y. J. Kim, J. K. Park, and H. T. Kim, A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries, J. Power Sources, 284, 103-108 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.004
  26. W. J. Kwak, J. Park, T. T. Nguyen, H. Kim, H. R. Byon, M. Jang, and Y.-K. Sun, A dendrite-and oxygen-proof protective layer for lithium metal in lithium-oxygen batteries, J. Mater. Chem. A, 7(8), 3857-3862 (2019). https://doi.org/10.1039/c8ta11941d
  27. W. J. Kwak, S. J. Park, H. G. Jung, and Y.-K. Sun, Optimized concentration of redox mediator and surface protection of Li metal for maintenance of high energy efficiency in Li-O2 batteries, Adv. Energy Mater., 8(9), 1702258 (2018). https://doi.org/10.1002/aenm.201702258
  28. F. Ding, W. Xu, G. L. Graff, J. Zhang, M. L. Sushko, X. Chen, Y. Shao, M. H. Engelhard, Z. Nie, J. Xiao, X. Liu, P. V. Sushko, J. Liu, and J.-G. Zhang, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism, J. Am. Chem. Soc., 135(11), 4450-4456 (2013). https://doi.org/10.1021/ja312241y
  29. S. Li, S. Fang, H. Dou, and X. Zhang, RbF as a dendriteinhibiting additive in lithium metal batteries, ACS Appl. Mater. Interfaces, 11(23), 20804-20811 (2019). https://doi.org/10.1021/acsami.9b03940
  30. D. Wang, H. Liu, M. Li, D. Xia, J. Holoubek, Z. Deng, M. Yu, J.Tian, Z. Shan, S. Pi. Ong, P. Liu, and Z. Chen, A long-lasting dual-function electrolyte additive for stable lithium metal batteries, Nano Energy, 75, 104889 (2020). https://doi.org/10.1016/j.nanoen.2020.104889
  31. H. Ye, Y. X. Yin, S. F. Zhang, Y. Shi, L. Liu, X. X. Zeng, R. Wen, Y.-G. Guo, and L.-J. Wan, Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode, Nano Energy, 36, 411-417 (2017). https://doi.org/10.1016/j.nanoen.2017.04.056
  32. J. Park, J. Jeong, Y. Lee, M. Oh, M.-H. Ryou, and Y. M. Lee, Micro-patterned lithium metal anodes with suppressed dendrite formation for post lithium-ion batteries, Adv. Mater. Interfaces, 3(11), 1600140 (2016). https://doi.org/10.1002/admi.201600140
  33. Y. J. Kim, H. S. Jin, D. H. Lee, J. Choi, W. Jo, H. Noh, J. Lee, H. Chu, H. Kwack, F. Ye, and H. Lee, Guided Lithium Deposition by Surface Micro-Patterning of Lithium-Metal Electrodes, Chem. Electro. Chem., 5(21), 3169-3175 (2018).
  34. W. B. Jung, O. B. Chae, M. Kim, Y. Kim, Y.J. Hong, J. Y. Kim, S. Choi, D. Y. Kim, S. Moon, J. Suk, Y. Kang, M. Wu, and H.-T. Jung, Effect of highly periodic Au nanopatterns on dendrite suppression in lithium metal batteries, ACS Appl. Mater. Interfaces, 13(51), 60978-60986 (2021). https://doi.org/10.1021/acsami.1c15196
  35. S. Schweidler, L. Biasi, A. Schiele, P. Hartmann, T. Brezesinski, and J. Janek, Volume changes of graphite anodes revisited: a combined operando X-ray diffraction and in situ pressure analysis study, J. Phys. Chem. C, 122(16), 8829-8835 (2018). https://doi.org/10.1021/acs.jpcc.8b01873
  36. Z. Liu, Y. Qi, Y. X. Lin, L. Chen, P. Lu, and L. Q. Chen, Interfacial study on solid electrolyte interphase at Li metal anode: implication for Li dendrite growth, J. Electrochem. Soc., 163(3), A592 (2016). https://doi.org/10.1149/2.0151605jes
  37. J. Yamaki, S. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, and M. Arakawa, A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte, J. Power Sources, 74(2), 219-227 (1998). https://doi.org/10.1016/S0378-7753(98)00067-6
  38. E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model, J. Electrochem. Soc., 126(12), 2047 (1979). https://doi.org/10.1149/1.2128859
  39. A. Wang, S. Kadam, H. Li, S. Shi, and Y. Qi, Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries., npj Computational Materials, 4(1), 1-26 (2018). https://doi.org/10.1038/s41524-017-0060-9
  40. Y. Feng, C. Zhang, X. Jiao, Z. Zhou, and J. Song, Highly stable lithium metal anode with near-zero volume change enabled by capped 3D lithophilic framework, Energy Storage Mater., 25, 172-179 (2020). https://doi.org/10.1016/j.ensm.2019.10.017
  41. J. Zeng, Q. Liu, D. Jia, R. Liu, S. Liu, B. Zheng, Y. Zhu, R. Fu, and D. Wu, A polymer brush-based robust and flexible single-ion conducting artificial SEI film for fast charging lithium metal batteries, Energy Storage Mater., 41, 697-702 (2021). https://doi.org/10.1016/j.ensm.2021.07.002
  42. J. Li, Z. Kong, X. Liu, B. Zheng, Q. H. Fan, E. Garratt, T. Schuelke, K. Wang, H. Xu, H. Jin, Strategies to anode protection in lithium metal battery: A review, InfoMat, 3(12), 1333-1363 (2021). https://doi.org/10.1002/inf2.12189
  43. T. B. T. Truong, Y.-R. Chen, G.-Y. Lin, H.-T. Lin, Y.-S. Wu, C.-C. Yang, Lithium polyacrylate polymer coating enhances the performance of graphite/silicon/carbon composite anodes, Electrochim. Acta, 365, 137387 (2021). https://doi.org/10.1016/j.electacta.2020.137387
  44. N. P. W. Pieczonka, V. Borgel, B. Ziv, N. Leifer, V. Dargel, D. Aurbach, J.-H. Kim, Z. Liu, X. Huang, S. A. Krachkovskiy, G. R. Goward, I. Halalay, B. R. Powell, and A. Manthiram, Lithium Polyacrylate (LiPAA) as an Advanced Binder and a Passivating Agent for High-Voltage Li-Ion Batteries, Adv. Energy Mater., 5(23), 1501008 (2015). https://doi.org/10.1002/aenm.201501008
  45. J. Li, D.-B. Le, P. P. Ferguson, and J. R. Dahn, Lithium polyacrylate as a binder for tin-cobalt-carbon negative electrodes in lithium-ion batteries, Electrochim. Acta, 55(8), 2991-2995 (2010). https://doi.org/10.1016/j.electacta.2010.01.011
  46. Z. Xu, J. Yang, T. Zhang, Y. Nuli, J. Wang, and S. Hirano, Silicon microparticle anodes with self-healing multiple network binder, Joule, 2(5), 950-961 (2018). https://doi.org/10.1016/j.joule.2018.02.012
  47. X. Wang, R. Kerr, F. Chen, N. Goujon, J. M. Pringle, D. Mecerreyes, M. Forsyth, and P. C. Howlett, Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes, Adv. Mater., 32(18), 1905219 (2020). https://doi.org/10.1002/adma.201905219
  48. W. Liu, P. Liu, and D, Mitlin, Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes, Adv. Energy Mater., 10(43), 2002297 (2020). https://doi.org/10.1002/aenm.202002297
  49. Q. Zhang, J. Pan, P. Lu, Z. Liu, M. W. Verbrugge, B. W. Sheldon, Y.-T. Cheng, Y. Qi, and X. Xiao, Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries, Nano Lett., 16(3), 2011-2016 (2016). https://doi.org/10.1021/acs.nanolett.5b05283
  50. J. Pan, Y.-T. Cheng, and Y. Qi, General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes, Phys. Rev. B, 91(13), 134116 (2015). https://doi.org/10.1103/physrevb.91.134116
  51. Y. Ozhabes, D. Gunceler, and T. A. Arias, Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression, arXiv, 1504.05799, (2015).
  52. S. Choudhury and L. A. Archer, Lithium fluoride additives for stable cycling of lithium batteries at high current densities, Adv. Electron. Mater., 2(2), 1500246 (2016). https://doi.org/10.1002/aelm.201500246
  53. Q. Wu, Z. Yao, A. Du, H. Wu, M. Huang, J. Xu, F. Cao, and C. Li, Oxygen-defect-rich coating with nanoporous texture as both anode host and artificial SEI for dendrite-mitigated lithium-metal batteries, J. Mater. Chem. A, 9(9), 5606-5618 (2021). https://doi.org/10.1039/D0TA08782C
  54. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J.-G. Zhang, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci., 7(2), 513-537 (2014). https://doi.org/10.1039/C3EE40795K
  55. S. Jin, Z. Sun, Y. Guo, Z. Qi, C. Guo, X. Kong, Y. Zhu, and H. Ji, High areal capacity and lithium utilization in anodes made of covalently connected graphite microtubes, Adv. Mater., 29(38), 1700783 (2017). https://doi.org/10.1002/adma.201700783
  56. R. A. Huggins, Solid Electrolyte Battery Materials, STANFORD UNIV CALIF CENTER FOR MATERIALS RESEARCH, 1977.
  57. J. T. Lee, H. Kim, M. Oschatz, D. C. Lee, F. Wu, H.-T. Lin, B. Zdyrko, W. I. Cho, S. Kaskel, and G. Yushin, Micro-and Mesoporous Carbide-Derived Carbon-Selenium Cathodes for High-Performance Lithium Selenium Batteries, Adv. Energy Mater., 5(1), 1400981 (2015). https://doi.org/10.1002/aenm.201400981
  58. Q. Zhao, Z. Tu, S. Wei, K. Zhang, S. Choudhury, X. Liu, and L. A. Archer, Building organic/inorganic hybrid interphases for fast interfacial transport in rechargeable metal batteries, Angew. Chem. Int. Ed., 57(4), 992-996 (2018). https://doi.org/10.1002/anie.201711598
  59. G. Hou, C. Ci, D. Salpekar, Q. Ai, Q. Chen, H. Guo, L. Chen, X. Zhang, J. Cheng, K. Kato, R. Vajtai, P. Si, G. Babu, L. Ci, and P. M. Ajayan, Stable lithium metal anode enabled by an artificial multi-phase composite protective film, J. Power Sources, 448, 227547 (2020). https://doi.org/10.1016/j.jpowsour.2019.227547
  60. X.-B. Cheng, C. Yan, H.-J. Peng, J.-Q. Huang, S.-T. Yang, and Q. Zhang, Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes, Energy Storage Mater., 10, 199-205 (2018). https://doi.org/10.1016/j.ensm.2017.03.008
  61. H. Wada, M. Menetrier, A. Levasseur, and P. Hagenmuller, Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses, Mater. Res. Bull., 18(2), 189-193 (1983). https://doi.org/10.1016/0025-5408(83)90080-6
  62. H. Ha, J. Park, S. Ando, C. B. Kim, K. Nagai, B. D. Freeman, and C. J. Ellison, Gas permeation and selectivity of poly (dimethylsiloxane)/graphene oxide composite elastomer membranes, J. Membr. Sci., 518, 131-140 (2016). https://doi.org/10.1016/j.memsci.2016.06.028
  63. S. Di, X. Nie, G. Ma, W. Yuan, Y. Wang, Y. Liu, S. Shen, and N. Zhang, Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase, Energy Storage Mater., 43, 375-382 (2021). https://doi.org/10.1016/j.ensm.2021.09.021
  64. B. Zhu, Y. Jin, X. Hu, Q. Zheng, S. Zhang, Q. Wang, and J. Zhu, Poly (dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes, Adv. Mater., 29(2), 1603755 (2017). https://doi.org/10.1002/adma.201603755
  65. M. Liu, J. Sun, and Q. Chen, Influences of heating temperature on mechanical properties of polydimethylsiloxane, Sens. Actuator A Phys., 151(1), 42-45 (2009). https://doi.org/10.1016/j.sna.2009.02.016
  66. H. Ha, J. Park, K. R. Ha, B. D. Freeman, and C. J. Ellison, Synthesis and gas permeability of highly elastic poly (dimethylsiloxane)/graphene oxide composite elastomers using telechelic polymers, Polymer, 93, 53-60 (2016). https://doi.org/10.1016/j.polymer.2016.04.016
  67. D. J. Lee, H. Lee, Y. J. Kim, J. K. Park, and H. T. Kim, Sustainable redox mediation for lithium-oxygen batteries by a composite protective layer on the lithium-metal anode, Adv. Mater., 28(5), 857-863 (2016). https://doi.org/10.1002/adma.201503169
  68. W.-J. Kwak, H.-G. Jung, D. Aurbach, and Y.-K. Sun, Optimized bicompartment two solution cells for effective and stable operation of Li-O2 batteries, Adv. Energy Mater., 7(21), 1701232 (2017). https://doi.org/10.1002/aenm.201701232
  69. H. Ohtaki, Structural studies on solvation and complexation of metal ions in nonaqueous solutions, Pure Appl. Chem., 59(9), 1143-1150 (1987). https://doi.org/10.1351/pac198759091143
  70. H. Xiang, D. Mei, P. Yan, P. Bhattacharya, S. D. Burton, A.W. Cresce, R. Cao, M. H. Engelhard, M. E. Bowden, Z. Zhu, B. J. Polzin, C.-M. Wang, K. Xu, J.-G. Zhang, and W. Xu, The role of cesium cation in controlling interphasial chemistry on graphite anode in propylene carbonate-rich electrolytes, ACS Appl. Mater. Interfaces, 7(37), 20687-20695 (2015). https://doi.org/10.1021/acsami.5b05552
  71. F. Ding, W. Xu, X. Chen, J. Zhang, Y. Shao, M. H. Engelhard, Y. Zhang, T. A. Blake, G. L. Graff, X. Liu, and J.-G. Zhang, Effects of cesium cations in lithium deposition via self-healing electrostatic shield mechanism, J. Phys. Chem. C, 118(8), 4043-4049 (2014). https://doi.org/10.1021/jp4127754
  72. Y. Kameda, Y. Umebayashi, M. Takeuchi, M. A. Wahab, S. Fukuda, S.-I. Ishiguro, M. Sasaki, Y. Amo, and T. Usuki, Solvation structure of Li+ in concentrated LiPF6-propylene carbonate solutions, J. Phys. Chem. B, 111(22), 6104-6109 (2007). https://doi.org/10.1021/jp072597b
  73. S. H. Lee and J. C. Rasaiah, Molecular dynamics simulation of ionic mobility. I. Alkali metal cations in water at 25 C, J. Chem. Phys., 101(8), 6964-6974 (1994). https://doi.org/10.1063/1.468323
  74. S. H. Lee and J. C. Rasaiah, Molecular dynamics simulation of ion mobility. 2. Alkali metal and halide ions using the SPC/E model for water at 25 C, J. Phys. Chem., 100(4), 1420-1425 (1996). https://doi.org/10.1021/jp953050c
  75. Q. Xu, Y. Yang, and H. Shao, Enhanced cycleability and dendrite-free lithium deposition by adding potassium ion to the electrolyte for lithium metal batteries, Electrochim. Acta, 212, 758-766 (2016). https://doi.org/10.1016/j.electacta.2016.07.080
  76. J.-L. Lin, C. Huang, C.-J. M. Chin, and J. R. Pan, The origin of Al (OH) 3-rich and Al13-aggregate flocs composition in PACl coagulation, Water Res., 43(17), 4285-4295 (2009). https://doi.org/10.1016/j.watres.2009.06.023
  77. Q. Li, B. Quan, W. Li, J. Lu, J. Zheng, X. Yu, J. Li, and H. Li, Electro-plating and stripping behavior on lithium metal electrode with ordered three-dimensional structure, Nano Energy, 45, 463-470 (2018). https://doi.org/10.1016/j.nanoen.2018.01.019